Retrieval Models: Vector Space Model

- Any text object can be represented by a term vector
 - Documents, queries, passages, sentences
 - A query can be seen as a short document
- Similarity is determined by distance in the vector space
 - Example: cosine of the angle between two vectors

(Research) Famous Examples

- The SMART system
 - Developed at Cornell University: 1960-1999
 - Still quite popular
- The Lucene system
 - Open source information retrieval library; (Based on Java)
 - Works with Hadoop (Map/Reduce) in large scale app (e.g., Amazon Book)
Retrieval Models: Vector Space Model

Vector space model vs. Boolean model

• Boolean models
 – Query: a Boolean expression that a document must satisfy
 – Retrieval: Deductive inference

• Vector space model
 – Query: viewed as a short document in a vector space
 – Retrieval: Similarity search

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oracle</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Starbucks</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Retrieval Models: Vector Space Model

- Vector representation

Give two vectors of query and document

- Query \(\vec{q} = (q_1, q_2, \ldots, q_n) \)
- Document \(\vec{d}_j = (d_{j1}, d_{j2}, \ldots, d_{jn}) \)
- calculate the similarity

Cosine similarity: Angle between vectors

\[
\text{sim} \left(\vec{q}, \vec{d}_j \right) = \cos \left(\theta \left(\vec{q}, \vec{d}_j \right) \right)
\]

\[
\cos \left(\theta \left(\vec{q}, \vec{d}_j \right) \right) = \frac{\vec{q} \cdot \vec{d}_j}{\| \vec{q} \| \| \vec{d}_j \|} = \frac{q_1 d_{j1} + q_2 d_{j2} + \ldots + q_n d_{jn}}{\sqrt{q_1^2 + q_2^2 + \ldots + q_n^2} \sqrt{d_{j1}^2 + d_{j2}^2 + \ldots + d_{jn}^2}}
\]
Retrieval Models: Vector Space Model

• Vector representation

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oracle</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Starbucks</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Similarity Score | D1 | D2 | D3 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>0.59</td>
<td>0.99</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Retrieval Models: Vector Space Model

Vector Coefficients

• The coefficients (vector elements) represent term evidence/term importance

• Derived from several elements
 – Document term weight: Evidence of the term in the document/query
 – Collection term weight: Importance of term from observation of collection
 – Length normalization: Reduce document length bias

• Naming convention for coefficients:

\[q_k.d_{j,k} = DCL.DCL \]

First triple represents query term; second for document term
Retrieval Models: Vector Space Model

- Common vector weight components:
 - Inc.ltc: widely used term weight
 - “l”: $\log(tf)+1$
 - 0 if $tf=0$
 - “n”: no weight/normalization
 - “t”: $\log(N/df)$
 - “c”: cosine normalization

$$\frac{q_dj_1 + q_dj_2 + \ldots + q_dj_m}{\|q_d\| \cdot \|j\|} = \frac{\sum_k \left[\log(tf_k + 1) \left(\log(tf_k + 1) + \log \frac{N}{df_k(k)} \right) \right]}{\sqrt{\sum_k \left[\log(tf_k + 1) \right]^2} \cdot \sqrt{\sum_k \left[\log(tf_k + 1) + \log \frac{N}{df_k(k)} \right]^2 \cdot \sqrt{\sum_k \left[\log(tf_k + 1) + \log \frac{N}{df_k(k)} \right]^2}}}$$

- dnn.dtb: handle varied document lengths
 - “d”: $1+\ln(1+\ln(tf))$
 - “t”: $\log((N/df)$
 - “b”: $1/(0.8+0.2*\text{doclen}/\text{avg_doclen})$
Retrieval Models: Vector Space Model Summary

• Standard vector space
 – Represent query/documents in a vector space
 – Each dimension corresponds to a term in the vocabulary
 – Use a combination of components to represent the term evidence in both query and document
 – Use similarity function to estimate the relationship between query/documents (e.g., cosine similarity)

Retrieval Models: Vector Space Model

Advantages:
• Best match method; it does not need a precise query
• Generates ranked lists; easy to explore the results
• Simplicity: easy to implement
• Effectiveness: often works well
• Flexibility: can utilize different types of term weighting methods
• Used in a wide range of IR tasks: retrieval, classification, summarization, content-based filtering…
Retrieval Models: Vector Space Model

Disadvantages:

- **Hard to choose the dimension of the vector ("basic concept")**
 - Terms may not be the best choice
- Assume independent relationship among terms
- Heuristic for choosing vector operations
 - Choose of term weights
 - Choose of similarity function
- Assume a query and a document can be treated in the same way

Back to Inverted Indexes

- What does an Inverted Index look like for the Vector Space Model?
- Words
- Documents
- **Weights**
Retrieval Models: Vector Space Model

What is a good vector representation?
• Orthogonal: the dimensions are linearly independent ("no overlapping")
• No ambiguity (e.g., Java)
• Wide coverage and good granularity
• Good interpretation (e.g., representation of semantic meaning)
• Many possibilities: words, stemmed words, "latent concepts"….

Retrieve Concepts, not Terms

• Problem: Query is necessarily an incomplete representation of information needed
 – Terms known to querier
 – Exact information presumably unknown
• Idea: Retrieve similar concepts, not similar terms
• Challenge: What is the space of concepts?
 – How do we map document to concept?
 – How does user specify concept?