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Clustering

• Document clustering

– Motivations

– Document representations

– Success criteria

• Clustering algorithms

– K-means

– Model-based clustering (EM clustering)

– Hierarchical clustering
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What is clustering?

• Clustering is the process of grouping a set of physical or 

abstract objects into classes of similar objects

– It is the commonest form of unsupervised learning

• Unsupervised learning = learning from raw data, as opposed to 

supervised data where the correct classification of examples is given

– It is a common and important task that finds many applications 

in IR and other places

8
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Why cluster documents?

• Whole corpus analysis/navigation

– Better user interface

• For improving recall in search applications

– Better search results

• For better navigation of search results

• For speeding up vector space retrieval

– Faster search
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Navigating document collections

• Standard IR is like a book index

• Document clusters are like a table of contents

• People find having a table of contents useful
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Index
Aardvark, 15
Blueberry, 200
Capricorn, 1, 45-55
Dog, 79-99
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…
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2.a. The Nervous System
2.b. Organization of the Brain
2.c. The Visual System

3. Perception and Attention
3.a. Sensory Memory
3.b. Attention and Sensory Information Processing
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Corpus analysis/navigation

• Given a corpus, partition it into groups of related docs

– Recursively, can induce a tree of topics

– Allows user to browse through corpus to find information

– Crucial need: meaningful labels for topic nodes.

• Yahoo!: manual hierarchy

– Often not available for new document collection

11

Yahoo! Hierarchy
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For improving search recall

• Cluster hypothesis - Documents with similar text are related

• Therefore, to improve search recall:

– Cluster docs in corpus a priori

– When a query matches a doc D, also return other docs in the cluster 

containing D

• Hope if we do this: The query “car” will also return docs 

containing automobile

– Because clustering grouped together docs containing car with those 

containing automobile.

13
Why might this happen?

For better navigation of search results

• Grouping search results thematically

– clusty.com / Vivisimo

14
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Navigating search results (2)

• One can also view grouping documents with the same sense of a 
word as clustering

• Given the results of a search (e.g., jaguar, NLP),  partition into 
groups of related docs

• Can be viewed as a form of word sense disambiguation

• E.g., jaguar may have multiple senses:
– The car company

– The animal

– The football team

– The video game

• Recall query reformulation/expansion discussion

15

Navigating search results (2)

16
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For better navigation of search results

• And more visually: Kartoo.com

17

For speeding up vector space retrieval

• In vector space retrieval, we must find nearest doc 

vectors to query vector

• This entails finding the similarity of the query to every doc 

– slow (for some applications)

• By clustering docs in corpus a priori

– find nearest docs in cluster(s) close to query

– inexact but avoids exhaustive similarity computation

19
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What Is A Good Clustering?

• Internal criterion: A good clustering will produce high quality 
clusters in which:
– the intra-class (that is, intra-cluster) similarity is high

– the inter-class similarity is low

– The measured quality of a clustering depends on both the document 
representation and the similarity measure used

• External criterion: The quality of a clustering is also measured 
by its ability to discover some or all of the hidden patterns or 
latent classes
– Assessable with gold standard data

20

External Evaluation of Cluster Quality

• Assesses clustering with respect to ground truth

• Assume that there are C gold standard classes, while our 
clustering algorithms produce k clusters, π1, π2, …, πk with ni

members.

• Simple measure: purity, the ratio between the dominant class 
in the cluster πi and the size of cluster πi

Purity 𝜋𝑖 =
1

𝑛𝑖
max
𝑗

𝑛𝑖𝑗 for 𝑗 ∈ 𝐶

• Others are entropy of classes in clusters (or mutual 
information between classes and clusters)

21
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Cluster I Cluster II Cluster III

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Purity
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Issues for clustering

• Representation for clustering

– Document representation
• Vector space?  Normalization?

– Need a notion of similarity/distance

• How many clusters?

– Fixed a priori?

– Completely data driven?
• Avoid “trivial” clusters - too large or small

– In an application, if a cluster's too large, then for navigation purposes you've 
wasted an extra user click without whittling down the set of documents much.

23
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What makes docs “related”? 

• Ideal: semantic similarity.

• Practical: statistical similarity
– We will use cosine similarity, Docs as vectors

– We will describe algorithms in terms of cosine similarity:
Cosine similarity of normalized 𝐷𝑗 , 𝐷𝑘:

sim(𝐷𝑗 , 𝐷𝑘) = ෍

𝑖=1

𝑚

𝑤𝑖𝑗 × 𝑤𝑖𝑘

Also known as normalized inner product

– For many algorithms, easier to think in terms of a distance (rather than 
similarity) between docs.
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Recall doc as vector

• Each doc j is a vector of tfidf values, one component for 
each term.

• Can normalize to unit length.

• So we have a vector space

– terms are axis - aka features

– n docs live in this space

– even with stemming, may have 20,000+ dimensions

– do we really want to use all terms?
• Different from using vector space for search. Why?

26
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Intuition

Postulate: Documents that are “close together” 
in vector space talk about the same things.
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Clustering Algorithms

• Partitioning “flat” algorithms

– Usually start with a random (partial) partitioning

– Refine it iteratively

• k means/medoids clustering

• Model based clustering

• Hierarchical algorithms

– Bottom-up, agglomerative

– Top-down, divisive

28
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Partitioning Algorithms

• Partitioning method: Construct a partition of n documents 

into a set of k clusters

• Given: a set of documents and the number k

• Find: a partition of k clusters that optimizes the chosen 

partitioning criterion

– Globally optimal: exhaustively enumerate all partitions

– Effective heuristic methods: k-means and k-medoids algorithms

29

How hard is clustering?

• One idea is to consider all possible clusterings, and pick 
the one that has best inter and intra cluster distance 
properties 

• Suppose we are given n points, and would like to cluster 
them into k-clusters

– How many possible clusterings?

• Too hard to do it brute force or optimally

• Solution: Iterative optimization algorithms

– Start with a clustering, iteratively improve it (e.g., K-means)

30
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