Text Categorization
Prof. Chris Clifton
28 September 2020

Material adapted from course created by Dr. Luo Si, now leading Alibaba research group

Text Categorization

- Introduction to the task of text categorization
 - Manual vs. automatic text categorization
- Text categorization applications
- Evaluation of text categorization
- K nearest neighbor text categorization method
Text Categorization

• Tasks
 – Assign predefined categories to text documents / objects

• Motivation
 – Provide an organizational view of the data

• Large cost of manual text categorization
 – Millions of dollars spent for manual categorization in companies, governments, public libraries, hospitals
 – Manual categorization is almost impossible for some large scale application (Classification or Web pages)

Text Categorization

• Automatic text categorization
 – Learn algorithm to automatically assign predefined categories to text documents / objects
 – automatic or semi-automatic

• Procedures
 – Training: Given a set of categories and labeled document examples; learn a method to map a document to correct category (categories)
 – Testing: Predict the category (categories) of a new document

• Automatic or semi-automatic categorization can significantly reduce manual effort
Text Categorization: Examples

Example: US Census Business Survey (1990)

- Included 22 million responses
- Needed to be classified into industry categories (200+) and occupation categories (500+)
- Estimated $15 million if done by hand
- Two alternative automatic text categorization methods evaluated
 - Knowledge-Engineering (Expert System)
 - Machine Learning (k-nearest neighbor method)
Example: US Census Business Survey

• Knowledge-Engineering Approach
 – Expert System (Designed by domain expert)
 – Hand-Coded rule
 (e.g., “Professor” and “Lecturer” \(\Rightarrow\) “Education”)
 – Development cost: 2 experts, 8 years (192 Person-months)
 – Accuracy = 47%

• Machine Learning Approach
 – k-Nearest Neighbor (KNN) classification
 • “You are like people like you”, details later
 – Fully automatic
 – Development cost: 4 Person-months
 – Accuracy = 60%

Many Applications!

• Web page classification (Yahoo-like category taxonomies)
• News article classification (more formal than most Web pages)
• Automatic email sorting (spam detection; into different folders)
• Word sense disambiguation (Java programming vs. Java in Indonesia)
• Gene function classification (find the functions of a gene from the articles talking about the gene)
• What is your favorite application?...
Techniques Explored in Text Categorization

- Rule-based Expert system (Hayes, 1990)
- Nearest Neighbor methods (Creecy'92; Yang'94)
- Decision symbolic rule induction (Apte'94)
- Naïve Bayes (Language Model) (Lewis'94; McCallum'98)
- Regression method (Furh'92; Yang'92)
- Support Vector Machines (Joachims'98)
- Boosting or Bagging (Schapier'98)
- Neural networks (Wiener'95)
- ……

Text Categorization: Evaluation

Performance of different algorithms on Reuters-21578 corpus: 90 categories, 7769 Training docs, 3019 test docs, (Yang, JIR 1999)
Text Categorization: Evaluation

Contingency Table Per Category (for all docs)

<table>
<thead>
<tr>
<th></th>
<th>Truth: True</th>
<th>Truth: False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Positive</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Predicted Negative</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>a+c</td>
<td>b+d</td>
</tr>
</tbody>
</table>

- **a**: number of truly positive docs
- **b**: number of false-positive docs
- **c**: number of false negative docs
- **d**: number of truly-negative docs
- **n**: total number of test documents

Sensitivity and Specificity

- **Sensitivity**: $\frac{a}{a+c}$ truly-positive rate, the larger the better
- **Specificity**: $\frac{d}{b+d}$ truly-negative rate, the larger the better

Depends on decision threshold, trade off between the values
Text Categorization: Evaluation

- **Micro F1-Measure**
 - Calculate a single contingency table for all categories and calculate F1 measure
 - Treat each prediction with equal weight; better for algorithms that work well on large categories
- **Macro F1-Measure**
 - Calculate a single contingency table for every category; calculate F1 measure separately and average the values
 - Treat each category with equal weight; better for algorithms that work well on many small categories

K-Nearest Neighbor Classifier

- Also called “Instance-based learning” or “lazy learning”
 - low/no cost in “training”, high cost in online prediction
- Commonly used in pattern recognition (5 decades)
- Theoretical error bound analyzed by Duda & Hart (1957)
- Applied to text categorization in 1990’s
- Among top-performing text categorization methods
K-Nearest Neighbor Classifier

From all training examples:
• Find k examples that are most similar to the new document
 – “neighbor” documents
• Assign the category that is most common in these neighbor documents
 – neighbors “vote” for the category
• Can also consider the distance of a neighbor
 – a closer neighbor has more weight/influence

K-Nearest Neighbor Classifier

- Idea: find your language by what language your neighbors speak

 (k=1) [Red] (k=5) [Brown]

 (k=10) [Brown]?

- Use K nearest neighbors to vote
 1-NN: Red; 5-NN: Brown; 10-NN: ?; Weighted 10-NN: Brown
K Nearest Neighbor: Technical Elements

- Document representation
- Document distance measure: closer documents should have similar labels; neighbors speak the same language
- Number of nearest neighbors (value of K)
- Decision threshold

K Nearest Neighbor: Framework

Training data $D = \{(x_i, y_i)\}, \quad x_i \in \mathbb{R}^M, \text{docs, } \quad y_i \in \{0, 1\}$

Test data $x \in \mathbb{R}^M$ \quad The neighborhood is $D_k \in D$

Scoring Function $\hat{y}(x) = \frac{1}{k} \sum_{x_i \in D_k(x)} \text{sim}(x, x_i)y_i$

Classification: $\begin{cases} 1 & \text{if } \hat{y}(x) - t > 0 \\ 0 & \text{otherwise} \end{cases}$

Document Representation: X_i uses tf.idf weighting for each dimension
Choices of Similarity Functions

- **Euclidean distance**
 \[d(x_1, x_2) = \sqrt{\sum_v (x_{1v} - x_{2v})^2} \]

- **Kullback Leibler distance**
 \[d(x_1, x_2) = \sum_v x_{1v} \log \frac{x_{1v}}{x_{2v}} \]

- **Dot product**
 \[x_1 \cdot x_2 = \sum_v x_{1v} \cdot x_{2v} \]

- **Cosine Similarity**
 \[\cos(x_1, x_2) = \frac{\sum_v x_{1v} \cdot x_{2v}}{\sqrt{\sum_v x_{1v}^2} \sqrt{\sum_v x_{2v}^2}} \]

- **Kernel functions**
 \[k(x_1, x_2) = e^{-d(x_1, x_2)/2\sigma^2} \] (Gaussian Kernel)

Automatic learning of the metrics

Choices of Number of Neighbors (K)

![Graph showing Micro-F1 vs Number of Neighbors (K)](image)

Trade off between small number of neighbors and large number of neighbors
Choices of Number of Neighbors (K)

- Find desired number of neighbors by cross validation
 - Choose a subset of available data as training data, the rest as validation data
 - Find the desired number of neighbors on the validation data
 - The procedure can be repeated for different splits; find the consistent good number for the splits

Characteristics of KNN

Pros
- Simple and intuitive, based on local-continuity assumption
- Widely used and provide strong baseline in TC Evaluation
- No training needed, low training cost
- Easy to implement; can use standard IR techniques (e.g., tf.idf)

Cons
- Heuristic approach, no explicit objective function
- Difficult to determine the number of neighbors
- High online cost in testing; find nearest neighbors has high time complexity
Problem: Weighting of Terms

• K-NN treats all terms equally
 – Frequent but unimportant terms may dominate
• Which terms are more important?
 – TF.IDF?
 – …
• Solution – machine learning
 – We have training data