

CS47300: Web Information Search and Management

Text Categorization
Prof. Chris Clifton
28 September 2020
Material adapted from course created by
Dr. Luo Si, now leading Alibaba research group

Text Categorization

- Introduction to the task of text categorization
 - Manual vs. automatic text categorization
- · Text categorization applications
- Evaluation of text categorization
- K nearest neighbor text categorization method

Text Categorization

Department of Computer Science

- Tasks
 - Assign predefined categories to text documents / objects
- Motivation
 - Provide an organizational view of the data
- · Large cost of manual text categorization
 - Millions of dollars spent for manual categorization in companies, governments, public libraries, hospitals
 - Manual categorization is almost impossible for some large scale application (Classification or Web pages)

Text Categorization

- Automatic text categorization
 - Learn algorithm to automatically assign predefined categories to text documents / objects
 - automatic or semi-automatic
- Procedures
 - Training: Given a set of categories and labeled document examples;
 learn a method to map a document to correct category (categories)
 - Testing: Predict the category (categories) of a new document
- Automatic or semi-automatic categorization can significantly reduce manual effort

Text Categorization: Examples

Department of Computer Science

Example: US Census Business Survey (1990)

- Included 22 million responses
- Needed to be classified into industry categories (200+) and occupation categories (500+)
- Estimated \$15 million if done by hand
- Two alternative automatic text categorization methods evaluated
 - Knowledge-Engineering (Expert System)
 - Machine Learning (k-nearest neighbor method)

Example: US Census Business Survey

Department of Computer Science

- Knowledge-Engineering Approach
 - Expert System (Designed by domain expert)
 - Hand-Coded rule (e.g., "Professor" and "Lecturer" → "Education")
 - Development cost: 2 experts, 8 years (192 Person-months)
 - Accuracy = 47%
- Machine Learning Approach
 - k-Nearest Neighbor (KNN) classification
 - · "You are like people like you", details later
 - Fully automatic
 - Development cost: 4 Person-months
 - Accuracy = 60%

Many Applications!

- Web page classification (Yahoo-like category taxonomies)
- News article classification (more formal than most Web pages)
- Automatic email sorting (spam detection; into different folders)
- Word sense disambiguation (Java programming vs. Java in Indonesia)
- Gene function classification (find the functions of a gene from the articles talking about the gene)
- What is your favorite application?...

Techniques Explored in Text Categorization

- Rule-based Expert system (Hayes, 1990)
- Nearest Neighbor methods (Creecy'92; Yang'94)
- Decision symbolic rule induction (Apte'94)
- Naïve Bayes (Language Model) (Lewis'94; McCallum'98)
- Regression method (Furh'92; Yang'92)
- Support Vector Machines (Joachims'98)
- Boosting or Bagging (Schapier'98)
- Neural networks (Wiener'95)
-

Text Categorization: Evaluation

Contingency Table Per Category (for all docs)

	Truth: True	Truth: False	
Predicted	2	h	a+b
Positive	a 	b	a+D
Predicted		4	oud
Negative	С	u	c+d
	a+c	b+d	n=a+b+c+d

a: number of truly positive docs b: number of false-positive docs

c: number of false negative docs d: number of truly-negative docs

n: total number of test documents

Text Categorization: Evaluation

Department of Computer Science

Contingency Table Per Category (for all docs) n: total number of docs

Sensitivity: a/(a+c) truly-positive rate, the larger the better

Specificity: d/(b+d) truly-negative rate, the larger the better

Depends on decision threshold, trade off between the values

Text Categorization: Evaluation

Department of Computer Science

- Micro F1-Measure
 - Calculate a single contingency table for all categories and calculate F1 measure
 - Treat each prediction with equal weight; better for algorithms that work well on large categories
- Macro F1-Measure
 - Calculate a single contingency table for every category; calculate F1 measure separately and average the values
 - Treat each category with equal weight; better for algorithms that work well on many small categories

K-Nearest Neighbor Classifier

- Also called "Instance-based learning" or "lazy learning"
 - low/no cost in "training", high cost in online prediction
- Commonly used in pattern recognition (5 decades)
- Theoretical error bound analyzed by Duda & Hart (1957)
- Applied to text categorization in 1990's
- Among top-performing text categorization methods

K-Nearest Neighbor Classifier

From all training examples:

- Find k examples that are most similar to the new document
 - "neighbor" documents
- Assign the category that is most common in these neighbor documents
 - neighbors "vote" for the category
- Can also consider the distance of a neighbor
 - a closer neighbor has more weight/influence

K-Nearest Neighbor Classifier

Department of Computer Science

Idea: find your language by what language your neighbors speak

Use K nearest neighbors to vote

1-NN:Red; 5-NN:Brown; 10-NN:?; Weighted 10-NN:Brown

K Nearest Neighbor: Technical Elements

Department of Computer Science

- Document representation
- Document distance measure: closer documents should have similar labels; neighbors speak the same language
- Number of nearest neighbors (value of K)
- Decision threshold

K Nearest Neighbor: Framework

Department of Computer Science

Training data $D = \{(x_i, y_i)\}, x_i \in R^M, docs, y_i \in \{0,1\}$

Test data $x \in R^M$ The neighborhood is $D_k \in D$

Scoring Function $\hat{y}(x) = \frac{1}{k} \sum_{x_i \in D_v(x)} sim(x, x_i) y_i$

Classification: $\begin{cases} 1 & \text{if } \hat{y}(x) - t > 0 \\ 0 & \text{otherwise} \end{cases}$

Document Representation: X_i uses tf.idf weighting for each dimension

Choices of Similarity Functions

Department of Computer Science

Euclidean distance $d(\vec{x}_1, \vec{x}_2) = \sqrt{\sum_{v} (x_{1v} - x_{2v})^2}$

Kullback Leibler distance

 $d(\vec{x}_1, \vec{x}_2) = \sum_{v} x_{1v} \log \frac{x_{1v}}{x_{2v}}$

Dot product

 $\vec{x}_1 * \vec{x}_2 = \sum_{v} x_{1v} * x_{2v}$

Cosine Similarity

 $\cos(\vec{x}_1, \vec{x}_2) = \frac{\sum_{v} x_{1v} * x_{2v}}{\sqrt{\sum_{v} x_{1v}^2} \sqrt{\sum_{v} x_{2v}^2}}$

Kernel functions

 $\vec{k(x_1, x_2)} = e^{-d(\vec{x_1}, \vec{x_2})/2\sigma^2}$ (Gaussian Kernel)

Automatic learning of the metrics

Choices of Number of Neighbors (K)

Department of Computer Science

Trade off between small number of neighbors and large number of neighbors

Choices of Number of Neighbors (K)

Department of Computer Science

- Find desired number of neighbors by cross validation
 - Choose a subset of available data as training data, the rest as validation data
 - Find the desired number of neighbors on the validation data
 - The procedure can be repeated for different splits; find the consistent good number for the splits

Characteristics of KNN

Department of Computer Science

Pros

- Simple and intuitive, based on local-continuity assumption
- Widely used and provide strong baseline in TC Evaluation
- No training needed, low training cost
- Easy to implement; can use standard IR techniques (e.g., tf.idf)
 Cons

Cons

- · Heuristic approach, no explicit objective function
- Difficult to determine the number of neighbors
- High online cost in testing; find nearest neighbors has high time complexity

Problem: Weighting of Terms

Department of Computer Science

- · K-NN treats all terms equally
 - Frequent but unimportant terms may dominate
- Which terms are more important?
 - TF.IDF?
 - . . .
- Solution machine learning
 - We have training data

32