

CS47300: Web Information Search and Management

Course Review Prof. Chris Clifton 4 December 2020

Text Representation

- What to index?
 - All words
 - Stopwords, Stemming
 - Controlled Vocabulary
 - Ontologies
 - Phrases, N-Grams
- How to represent?
 - "Bag of Words" (Vector Space Model)
 - Preserve order, distance

5

PURDUE Department of Computer Science	Retrieval Models		
Retrieval Models			
 Boolean 	Westlaw		
 Vector space Basic vector space/TF-IDF Extended Boolean Probabilistic models Statistical language models Two Poisson model Bayesian inference networks Citation/Link analysis models 	SMART, LUCENE	Lemur	
	Lemur Project (Indri, Galago) Okapi Inquery		
Page rankHub & authorities	Google (at one time) Clever		
			15

Binary Independence Model

Department of Computer Science

URL frontier: two main considerations

• Politeness: do not hit a web server too frequently

<u>Freshness</u>: crawl some pages more often than others

E.g., pages (such as News sites) whose content changes often

These goals may conflict with each other.
(E.g., simple priority queue fails – many links out of a page go to its own site, creating a burst of accesses to that site.)

69

Age

• Expected age of a page *t* days after it was last crawled:

Age
$$(\lambda, t) = \int_0^t P(\text{page changed at time } x)(t - x)dx$$

- Web page updates follow the Poisson distribution on average
 - time until the next update is governed by an exponential distribution

Age
$$(\lambda, t) = \int_0^t \lambda e^{-\lambda x} (t - x) dx$$

Detecting Duplicates

- Duplicate and near-duplicate documents occur in many situations
 - Copies, versions, plagiarism, spam, mirror sites
 - 30% of the web pages in a large crawl are exact or near duplicates of pages in the other 70%
- Duplicates consume significant resources during crawling, indexing, and search
 - Little value to most users

Recall: r=a/(a+c) percentage of positive docs detected Precision: p=a/(a+b) how accurate are the predicted positive docs Accuracy: (a+d)/n how accurate are all the predicted docs F-measure: $F_{\beta} = \frac{(\beta^2 + 1)pr}{\beta^2 p + r}$ $F_1 = \frac{2pr}{p + r}$ Harmonic average: $\frac{1}{\frac{1}{2}\left(\frac{1}{x_{+}}+\frac{1}{x_{-}}\right)}$

Error: (b+c)/n

Accuracy+Error=1

Department of Computer Science

error rate of predicted docs

Naïve Bayes Classification

- Naïve Bayes (NB) Classification
 - Generative Model: Model both the input data (i.e., document contents) and output data (i.e., class labels)
 - Make strong assumption of the probabilistic modeling approach
- Methodology
 - Similar with the idea of language modeling approaches for information retrieval
 - Train a language model for all the documents in one category

What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the intra-class (that is, intra-cluster) similarity is high
 - the inter-class similarity is low
 - The measured quality of a clustering depends on both the document representation and the similarity measure used
- External criterion: The quality of a clustering is also measured by its ability to discover some or all of the hidden patterns or latent classes
 - Assessable with gold standard data

Collaborative Filtering

Department of Computer Science

$$P(Z_{o}); P(Z_{u}); P(o_{(l)} | Z_{o}); P(u_{(l)} | Z_{u}); P(r_{(l)} | Z_{o}, Z_{u})$$

M-Step: Update Parameters

• Prediction Procedure: Fold-In process to calculate joint probabilities

$$P(o, u^{t}, r_{(l)}) = \sum_{Z_{o}, Z_{u}} P(Z_{o}) P(Z_{u}) P(o \mid Z_{o}) P(u^{t} \mid Z_{u}) P(r \mid Z_{o}, Z_{u})$$

Fold-in process by EM algorithm

Calculate expectation for prediction

$$\hat{R}_{u'}(o) = \sum_{r} r \frac{P(o, u^{t}, r)}{\sum_{r'} P(o, u^{t}, r')}$$

"Flexible Mixture Model for Collaborative Filtering", ICML'03

Content-Based Filtering and Unified Filtering

Content-Based Filtering (CF):

- Generative Methods (e.g. Naïve Bayes)
- Discriminative Methods (e.g. SVM, Logistic Regression)
 - Usually more accurate
 - Can be used to combine features (e.g., actors for movies)

Unified Filtering by combining CF and CBF:

- Linearly combine the scores from CF and CBF
- Personalized linear combination of the scores
- · Bayesian combination with collaborative ensemble learning