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Weighting of Terms

Department of Computer Science

* K-NN treats all terms equally

— Frequent but unimportant terms may dominate
* Which terms are more important?

— TRIDF?
« Solution — machine learning

— We have training data
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PORDYE Naive Bayes Classification
* Naive Bayes (NB) Classification
— Generative Model: Model both the input data (i.e., document
contents) and output data (i.e., class labels)

— Make strong assumption of the probabilistic modeling approach

» Methodology

— Similar with the idea of language modeling approaches for
information retrieval

— Train a language model for all the documents in one category
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Department of Computer Science

» Methodology
— Train a language model for all the documents in one category

Category 1:(&14,61'2 ..... Jllnl) — Language model 6,
CategoryZ:(cszl,azy2 ..... JZ,nz) — Language model 6,

CategoryC:(d*Cyl,JC'2 ..... d'cynK) — Language model 6,

— What is the language model? (Multinomial distribution)

— How to estimate the language model for all the documents in one
category?
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» Representation
— Each document is a “bag of words” with weights (e.g., TF.IDF)

— Each category is a super “bag of words”, which is composed of
all words in all the documents associated with the category

— For all the words in a specific category c, it is modeled by a
multinomial distribution as
p(der, ., e | 6,)
— Each category (c) has a prior distribution P(c), which is the

probably of choosing category ¢ BEFORE observing the
content of a document
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Maximum Likelihood Estimation:

+ Find model parameters for a category that
maximizes generation likelihood:

0 =argmax p(dei,..,den, |6,)
2

There are K words in vocabulary, w;...wy

Data: documents de,...,en,

Ford. with counts c(w;), ..., ¢(w,), and length | g
Model: multinomial M with parameters {p(w,)}
Likelihood: Pr(de,...,den, |6)

6 =argmax p(de,..,den, | 6,)
9(:
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e MLE Estimator: Normalization by simple counting
» Train a language model for all the documents in one category

ol ) - 2%
i=1|"ci
n
p(c) =<
don,
~

e Category Prior:

» Number of documents in the category divided by the total number of
documents
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e Smoothed Estimator:
» Laplace Smoothing

p(wlaj)zw

ne |5
+ 25|
Number of Words in

> Hierarchical Smoothing Vocabulary

p(W|6[) = HPW|6;) + 2P(W| G ). Ay P(W] )

» Dirichlet Smoothing

PORDYE Naive Bayes Classification
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e Prediction:
¢ =argmax p(c|d;)
C

p()p(d IC)}
p(d;)
—argmax p(c)p(d |c)} (Bayes Rule)

=arg max{

=arg max{ PO p(w | ¢) (Wk)} (Multinomail Dist)
k

= argmax log(p(c)) + ZC (Wi ) logp(w | C)}

/'

Plug in the estimator

PORDUE Naive Bayes Classification
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e Example of Binary Classification
Two classes

¢” =argmax p(c, |d;) —> p(c+—|dJ)
le[-+] p(c_|d;)

o(c, |d, ) [TP( . )] ) - ”;n

n

¢ (W)
p(e- 1) o [T ptwc [ )™ =
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e Example of Binary Classification

p(c. 1d;)
|di)

n+
+n

o

n, +n_

p(Wk | C+)
p(w lc)

¢ =argmax p(c, |d;) >
le[-+] p(c_

T1[p(w 1c,)]" ™

K n

+

[p(wk e

2

IO(C P, |d) «[by | ZC(WK) 8

p(c_|d)

E |

+> ¢ (w)log
k
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Linear Classifier
@ denotes +1
[] denotes -1
p(C+ |a|) .
Iogmm by + Zk:ci (W) x weight(w,)
E " " "
PORDUE Naive Bayes Classification
* Summary

— Utilize multinomial distribution for modeling categories and documents

— Use posterior distribution (posterior of category given document) to predict
optimal category

* Pros

— Solid probabilistic foundation

— Fast online response, linear classifier for binary classification
 Cons

— Empirical performance not very strong

— Probabilistic model for each category is estimated to maximize the data
likelihood for documents in the category (generative), not for purpose of
distinguishing documents in different categories (discriminative)
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