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Problem:

Weighting of Terms

• K-NN treats all terms equally

– Frequent but unimportant terms may dominate

• Which terms are more important?

– TF.IDF?

– …

• Solution – machine learning

– We have training data
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Naïve Bayes Classification

• Naïve Bayes (NB) Classification

– Generative Model: Model both the input data (i.e., document 

contents) and output data (i.e., class labels)

– Make strong assumption of the probabilistic modeling approach

• Methodology

– Similar with the idea of language modeling approaches for 

information retrieval

– Train a language model for all the documents in one category
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Naïve Bayes Classification

• Methodology
– Train a language model for all the documents in one category

– What is the language model?  (Multinomial distribution)

– How to estimate the language model for all the documents in one 
category?



©Jan-20 Christopher W. Clifton 320

Naïve Bayes Classification

• Representation 

– Each document is a “bag of words” with weights (e.g., TF.IDF)

– Each category is a super “bag of words”, which is composed of 
all words in all the documents associated with the category

– For all the words in a specific category c, it is modeled by a 
multinomial distribution as

– Each category (c) has a prior distribution P(c), which is the 
probably of choosing category c BEFORE observing the 
content of a document
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Naïve Bayes Classification

Maximum Likelihood Estimation:

• Find model parameters for a category that 
maximizes generation likelihood:

40

1 Id ,...,d

*
1arg max ( ,.., | )

c

c

c cnc cp d d


 

cc1 cnd ,...,d

There are K words in vocabulary, w1...wK

Data: documents

For      with counts ci(w1), …, ci(wk), and length |    |

Model: multinomial M with parameters {p(wk)} 

Likelihood: Pr(               |  )
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Maximum Likelihood Estimation (MLE)
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Use Lagrange multiplier approach 

Set  partial derivatives to zero       

Get maximum likelihood estimate
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 MLE Estimator: Normalization by simple counting

 Train a language model for all the documents in one category

 Category Prior:

 Number of documents in the category divided by the total number of 

documents

Naïve Bayes Classification
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 Smoothed Estimator:

 Laplace Smoothing 

Number of Words in 

Vocabulary
 Hierarchical Smoothing 

Naïve Bayes Classification
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 Prediction:
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Plug in the estimator

Naïve Bayes Classification
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 Example of Binary Classification

Two classes
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Naïve Bayes Classification

 Example of Binary Classification 
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Naïve Bayes Classification
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Naïve Bayes =

Linear Classifier
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Naïve Bayes Classification

• Summary
– Utilize multinomial distribution for modeling categories and documents

– Use posterior distribution (posterior of category given document) to predict 
optimal category

• Pros
– Solid probabilistic foundation

– Fast online response, linear classifier for binary classification

• Cons
– Empirical performance not very strong

– Probabilistic model for each category is estimated to maximize the data 
likelihood for documents in the category (generative), not for purpose of 
distinguishing documents in different categories (discriminative)
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