

PURDUE UNIVERSITY	Ree Retr	Regression for Retrieval Models			
 Challen – What 	ige: Training would training	Data data look like?			
QueryRegressionInformationRetrieval• Is this formation	Word Retrieval Model Training Data easible?	Count 4 3 7 2	Score 0.73		
				6	

TopCat: Data Mining for Topic Identification

Chris Clifton Robert Cooley

16 September, 1999

User Problem: Geographic News Analysis

A Data Mining Based Solution Idea in Brief A topic often contains a number of recurring players/concepts Identified highly correlated named entities (frequent itemsets) Can easily tie these back to the source documents But there were too many to be useful

- Frequent itemsets often overlap
 - Used this to cluster the correlated entities
 - But the link back to the source documents is no longer clear
- Evaluated against manually-categorized "ground truth" set
 - Data for Topic Detection and Tracking (TDT2) program
 - Used "topic" (list of entities) as a query to find relevant documents to compare with known mappings

Preprocessing

- Identify named entities (person, location, organization) in text
 - Alembic Natural Language Processing system
- Data Cleansing:
 - Coreference Resolution
 - Used intra-document coreference from NLP system
 - Heuristic to choose "global best name" from different choices in a document
 - Eliminate composite stories
 - Heuristic same headline monthly or more often
 - High Support Cutoff (5%)
 - Eliminate overly frequent named entities (only provide "common knowledge" topics)

Frequent Itemsets

Israel	State	West Bank	Netanyahu	Albright	Arafat	627390806
Iraq	State	Albright				479
Israel	Jerusalem	West Bank	Netanyahu	Arafat		4989413
Gaza	Netanyahu					39
Ramallah	Authority	West Bank				19506
Iraq	Israel	U.N.				39

- <u>Query Flocks</u> association rule mining technique
 22894 frequent itemsets with 0.05% support
- Results filtered based on strength of correlation and support
 Cuts to 3129 frequent itemsets
- Ignored subsets when superset with higher correlation found
 - 449 total itemsets, at most 12 items (most 2-4)

TopCat Evaluation

- Tested on Topic Detection and Tracking Corpus
 - Six months of print, video, and radio news sources
 - 65,583 documents
 - 100 topics manually identified (covering 6941 documents)
- Evaluation results (on evaluation corpus, last two months)
 - Identified over 80% of human-defined topics
 - Detected 83% of stories within human-defined topics
 - Misclassified 0.2% of stories
- Results comparable to "official" Topic Detection and Tracking participants
 - Slightly different problem retrospective detection
 - Provides "mnemonic" for topic (TDT participants only produce list of documents)