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 Web is a graph
— Each web site correspond to a node
— A link from one site to another site forms a directed edge
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 Web is a graph

Ad-Hoc Retrieval:
Beyond the Words

— Each web site correspond to a node

— A link from one site to another site forms a directed edge
* What does it look like?

— Web is small world

— The diameter of the web is 19
* e.g. the average number of clicks from one web site to another is 19
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Strongly Connected ites that link from the
Component : ‘center’ of the web
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» Both degrees of incoming and outgoing links follow power
law
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PURDUE Sp what good is
Link Structure?

« When you can’t find something, do you:
— Keep looking in the same place?
— Look somewhere else?
— Give up?
— Ask for help?
» Other people may already know the answer!
— Links: Reflect human judgement
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Early Approaches
» Basic Assumptions
— Hyperlinks contain information about the human judgment of a site
— The more incoming links to a site, the more it is judged important
* Bray 1996

— The visibility of a site is measured by the number of other sites
pointing to it

— The luminosity of a site is measured by the number of other sites to
which it points

— Limitation: failure to capture the relative importance of different
parents (children) sites

12
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PORDYE HITS - Kleinberg’s Algorithm
« HITS — Hypertext Induced Topic Selection
« For each vertex v € V in a subgraph of interest:
—a(v) - the authority of v
— h(v) - the hubness of v
« A site is very authoritative if it receives many citations.

— Citation from important sites weight more than citations from
less-important sites

» Hubness shows the importance of a site.
— A good hub is a site that links to many authoritative sites
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E’P:g@yﬁ Authority and Hubness
2 5
.| & e
AN
,
a(1) = h(2) + h(3) + h(4) h(1) = a(5) + a(6) + a(7)
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Recursive dependency  HubsAuthorities(G) v
B 1 1 ¢ [1,..1€R
av)= 2, hw) 2 a € he1
we pa[v] 3t €1
h(v) = Z a(w) 4 repeat
wech[v] 5 foreachvinV
6 doa (V) € = h (w)
wepav] t-1
7 h (v) € = a (w)
8t € t+l | wepall T
9 untillja,—a ll+llh-h_ll<e
1

0 return (at ,h t)

Problems ?
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PORDUE  Authority and Hubness: Version 2
Recursive dependency  HubsAuthorities(G) |,
_ 1 1 €M, 1€R
aWv)= 2 h(w) 2 a € hoe 1
we pa[v] 3t €1
h(v)= > a(w) 4  repeat
wech[v] 5 foreachvinV
6 do a;(v) € Z h . (w)
+ Normalization Wepal -1
7 hi (v) € zwé‘pa[v]a i (w)
s R AL
a(w
W 10 T
h(v) = h(v) 11 until|fag— aca |l + 1 he= hegll<e
o z h(w) 12 return (a¢, hy)
W
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@ Authority
@% Hubness

.Jlill.ilJ,IL.,

12 3 456 78 9101112131415
Authority and hubness weights
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 Authority score

— Not only depends on the number of incoming links

— But also the ‘quality’ (e.g., hubness) of the incoming links
* Hubness score

— Not only depends on the number of outgoing links

— But also the ‘quality’ (e.g., hubness) of the outgoing links

19
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+ Column vector a: g is the authority score for the i-th site
* Column vector h: h; is the hub score for the i-th site

1 the ith site points to the jth site

e Matrix M:
- {0 otherwise
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1000000

1100000

M={ §318a08

1000100

ooo0oo0o100
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el Authority and Hub

Department of Computer Science

» Vector a: g, is the authority score for the i-th site
» Vector h: h; is the hub score for the i-th site

+  Matrix M:
_ |1 the ith site points to the jth site
"o otherwise

- Recursive dependency:

aW) € I oo hw

hv) € 2 conng 8W)

21
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*Column vector a: g, is the authority score for the i-th site
*Column vector h: h; is the hub score for the i-th site

1 the ith site points to the jth site

*Matrix M:
b {0 otherwise

« Recursive dependency:

aW) € I o hw) 4= Mh
h) € Z,ecny @W) h=Ma
FE _
PORDUE Authority and Hub
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+ Column vector a: g is the authority score for the i-th site
* Column vector h: h;is the hub score for the i-th site

e Matrix M:

_ |1 the ith site points to the jth site
"o otherwise Normalization

Procedure

- Recursive dependency:

av) € = h(w) a, =

w € palv]

hv) € = a(w) h, =

w € ch[v]
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Authority and Hub

a, =aM"h,
h, = f,Ma,

*  Apply SVD to matrix M

M=UZV' = Auv/

|

a, =, f,,M" Ma,
_)

a:ul,h:V]_
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