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CS47300:  Web Information Search and 

Management

Using Graph Structure for Retrieval

Prof. Chris Clifton

24 September 2019
Material adapted from slides created by Dr. Rong Jin (formerly 

Michigan State, now at Alibaba)

Ad-Hoc Retrieval:

Beyond the Words

• Web is a graph

– Each web site correspond to a node

– A link from one site to another site forms a directed edge
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Citation Analysis
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Ad-Hoc Retrieval:

Beyond the Words

• Web is a graph

– Each web site correspond to a node

– A link from one site to another site forms a directed edge

• What does it look like?

– Web is small world

– The diameter of the web is 19

• e.g. the average number of clicks from one web site to another is 19
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Bowtie Structure

Broder et al., 2001

Strongly Connected 

Component
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Bowtie Structure

Broder et al., 2001

Sites that link towards the 

‘center’ of the web
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Bowtie Structure

Broder et al., 2001

Sites that link from the 

‘center’ of the web
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Inlinks and Outlinks

• Both degrees of incoming and outgoing links follow power 

law

Broder et al., 2001
27
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So what good is

Link Structure?

• When you can’t find something, do you:

– Keep looking in the same place?

– Look somewhere else?

– Give up?

– Ask for help?

• Other people may already know the answer!

– Links:  Reflect human judgement

28

Early Approaches

• Basic Assumptions
– Hyperlinks contain information about the human judgment of a site 

– The more incoming links to a site, the more it is judged important

• Bray 1996
– The visibility of a site is measured by the number of other sites 

pointing to it

– The luminosity of a site is measured by the number of other sites to 
which it points 

– Limitation: failure to capture the relative importance of different 
parents (children) sites
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HITS - Kleinberg’s Algorithm

• HITS – Hypertext Induced Topic Selection

• For each vertex v ϵ V in a subgraph of interest: 

– a(v) - the authority of v

– h(v) - the hubness of v

• A site is very authoritative if it receives many citations.

– Citation from important sites weight more than citations from 
less-important sites

• Hubness shows the importance of a site.

– A good hub is a site that links to many authoritative sites

32

Authority and Hubness
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1 1
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a(1) = h(2) + h(3) + h(4) h(1) = a(5) + a(6) + a(7)
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Authority and Hubness: Version 1

HubsAuthorities(G)
1 1  [1,…,1]  Є  R 

2 a    h   1

3 t     1

4 repeat

5 for each v in V

6 do  a  (v)   Σ h      (w)

7 h  (v)   Σ a      (w)

8 t     t + 1

9 until || a  – a     || + || h  – h     || < ε

10 return (a  , h  )
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Problems ?
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Authority and Hubness: Version 2
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+ Normalization

HubsAuthorities(G)
1 1  [1,…,1]  Є  R 

2 a    h   1

3 t     1

4 repeat

5 for each v in V

6 do  a  (v)   Σ h      (w)

7 h  (v)   Σ a      (w)

8 a    a  / || a ||

9 h    h  / || h ||

10 t     t + 1

11 until || a  – a     || + || h  – h     || < ε

12 return (a  , h  )
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HITS Example Results

Authority

Hubness

1  2   3   4   5   6   7  8   9  10 11 12 13 14 15

Authority and hubness weights 36

Authority and Hubness

• Authority score

– Not only depends on the number of incoming links

– But also the ‘quality’ (e.g., hubness) of the incoming links

• Hubness score

– Not only depends on the number of outgoing links

– But also the ‘quality’ (e.g., hubness) of the outgoing links
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Authority and Hub

• Column vector a: ai is the authority score for the i-th site

• Column vector h: hi is the hub score for the i-th site

• Matrix M: 

,

1 the th site points to the th site

0 otherwise
i j

i j
 


M

M =

38

Authority and Hub

• Vector a: ai is the authority score for the i-th site

• Vector h: hi is the hub score for the i-th site

• Matrix M: 

• Recursive dependency:

a(v)    Σ               h(w)

h(v)    Σ               a(w)

w Є pa[v]

w Є ch[v]

,

1 the th site points to the th site

0 otherwise
i j

i j
 


M
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Authority and Hub

•Column vector a: ai is the authority score for the i-th site

•Column vector h: hi is the hub score for the i-th site

•Matrix M:

hMa
T

• Recursive dependency:

a(v)    Σ               h(w)

h(v)    Σ               a(w)

w Є pa[v]

w Є ch[v]

,

1 the th site points to the th site

0 otherwise
i j

i j
 


M

h Ma
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Authority and Hub

• Column vector a: ai is the authority score for the i-th site

• Column vector h: hi is the hub score for the i-th site

• Matrix M: 

T
t t ta M h

• Recursive dependency:

a(v)    Σ               h(w)

h(v)    Σ               a(w)

w Є pa[v]

w Є ch[v]

,

1 the th site points to the th site

0 otherwise
i j

i j
 


M

t t th Ma

Normalization 

Procedure
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Authority and Hub

• Apply SVD to matrix M
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PageRank

• Introduced by Page et al. 
(1998)
– The weight is assigned by the 

rank of parents

• Difference from HITS
– HITS separates Hubness & 

Authority weights

– Page rank is proportional to its 
parents’ rank, but inversely 
proportional to its parents’ 
outdegree
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Matrix Notation

B =

M =

,

1 the th site points to the th site

0 otherwise
i j

i j
 
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M
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Matrix Notation

r = α BT r

α : eigenvalue

r : eigenvector of B

Finding Pagerank

 find principle eigenvector of B

:  represents the rank score for the i-th web pageir r

𝑟 𝑣 = 𝛼 ෍

𝑤∈pa 𝑣

𝑟 𝑤

|ch 𝑤 |′
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Matrix Notation

48

Random Walk Model

• Consider a random walk through the Web graph

B =? ?

?

??
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Random Walk Model

• Consider a random walk through the Web graph

B =

50

Random Walk Model

• Consider a random walk through the Web graph

B =

As T, what is portion of 

time that the web surfer will 

spend at each page?
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Random Walk Model

• Consider a random walk through the Web graph

B =

,

( ) :  percentage of time that the 

surfer will stay at the i-th site

( ) ( ) i k
i

p k

p k p i B

Tp B p 52

Adding Self Loop

• Allow surfer to decide to stay on the same place

B =

' (1 )   B B I
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Problem

• “Rank Sink” Problem
– Many Web pages have no inlinks

– Results in dangling edges in the
graph

B =

0

0

0

0

0

0

0     0      0      0      0     1      0     0

r(new page) = 0 54

Problem

• “Rank Sink” Problem
– Many Web pages have no outlinks

– Results in dangling edges in the
graph

B =

0

0

0

0

0

1

0     0      0      0      0     0      0     0

r(new page) = 1 55
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Distribution of the Mixture Model

, 1/

' (1 )

i j n

 



  

H

B H B

'Tr B r

Prevents the page ranks from 

being 0 or 1

56

Stability

• Are link analysis algorithms based on eigenvectors 

stable?

– Will small changes in graph result in major changes in 

outcomes?

• What if the connectivity of a portion of the graph is 

changed arbitrarily?

– How will this affect the results of algorithms?
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Stability of HITS

δ: eigengap λ1 – λ2

d: maximum outdegree of G

Ng et al (2001)

• A bound on the number of hyperlinks k that can be added or deleted 

from one page without affecting the authority or hubness weights

• It is possible to perturb a symmetric matrix by a quantity that grows 

as δ that produces a constant perturbation of the dominant 

eigenvector

𝑘 ≤ 𝑑 +
𝛼𝛿

4 + 2𝛼
− 𝑑

2

𝒂 − ෥𝒂 2 ≤ 𝛼
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Stability of PageRank

• The parameter ε of the mixture model has a 

stabilization role

• If the set of pages affected by the perturbation have a 

small rank, the overall change will also be small

Ng et al (2001)

V: the set of vertices touched by the perturbation

෤𝑟 − 𝑟 ≤
2σ𝑗∈V 𝑟 𝑗

𝜖
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