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PURDUE Ad-Hoc Retrieval:
Beyond the Words

 Web is a graph
— Each web site correspond to a node
— A link from one site to another site forms a directed edge
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PURDUE Ad-Hoc Retrieval:
Beyond the Words

 Web is a graph

— Each web site correspond to a node

— A link from one site to another site forms a directed edge
* What does it look like?

— Web is small world

— The diameter of the web is 19
* e.g. the average number of clicks from one web site to another is 19
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Bowtie Structure
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PURDUE

UNIVERSITY

Bowtie Structure

Sites that link towards the
‘center’ of the web
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Bowtie Structure
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» Both degrees of incoming and outgoing links follow power
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PURDUE So what good is
Link Structure?

« When you can’t find something, do you:
— Keep looking in the same place?
— Look somewhere else?
— Give up?
— Ask for help?
» Other people may already know the answer!
— Links: Reflect human judgement
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PURDUE Early Approaches

» Basic Assumptions
— Hyperlinks contain information about the human judgment of a site
— The more incoming links to a site, the more it is judged important

* Bray 1996

— The visibility of a site is measured by the number of other sites
pointing to it

— The luminosity of a site is measured by the number of other sites to
which it points

— Limitation: failure to capture the relative importance of different
parents (children) sites
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PURDUE 75 - Kleinberg’s Algorithm

UNIVERSITY

HITS — Hypertext Induced Topic Selection

For each vertex v € V in a subgraph of interest:

—a(v) - the authority of v

— h(v) - the hubness of v

A site is very authoritative if it receives many citations.

— Citation from important sites weight more than citations from
less-important sites

Hubness shows the importance of a site.
— A good hub is a site that links to many authoritative sites
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PURDUE Authority and Hubness
5
| e e
AN
;
a(1) = h(2) + h(3) + h(4) h(1) = a(5) + a(6) + a(7)
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Recursive dependency

av)= 2 h(w)
we pa[v]

h(v)= > a(w)
wech[v]

Authority and Hubness: Version 1

HubsAuthorities(G) v

1 1 ¢q,..1€RY

2 a < hoé 1

3 t €1

4  repeat

5 foreachvinV

6 doa(v) <€ % h  (w)
wepav] t-1

7 h (v) € X a (w)

8t «t+1 t w € pa[v] t-1

S; until la, - a , [l +]h, - ht-1”<£

0 return (at ,h t)

Problems ?
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PURDUE

UNIVERSITY

Recursive dependency

a(v)= 2 h(w)
we pa[v]

h(v)= 2 a(w)
wech[Vv]

+ Normalization

a)

R SPT
hw)

h(v) = —th(W)

Authority and Hubness: Version 2

HubsAuthorities(G) i

1 1 «€[1,..11€R

2 ayg <€ hg< 1

3t «1

4 repeat

5 foreachvinV

6 do a; (v) €« Zwe palV] ht 1 (w)
7 hi(v) € Sye palv] a{ 1 (w)
8 ar < ag/llall

9 hi< hi/]lh]|

10 t € t+1

11 until [Ja¢— a1 |[+|[he=heg I <e
12 return(a¢, hy)
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PURDUE HITS Example Results

UNIVERSITY

@ Authority
@% Hubness

.Jlllld.ilJ,IL.,

12 3 456 78 9101112131415
Authority and hubness weights
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PURDUE Authority and Hubness

UNIVERSITY

 Authority score

— Not only depends on the number of incoming links

— But also the ‘quality’ (e.g., hubness) of the incoming links
* Hubness score

— Not only depends on the number of outgoing links

— But also the ‘quality’ (e.g., hubness) of the outgoing links
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PURDUE Authority and Hub

+ Column vector a: g is the authority score for the i-th site
* Column vector h: h; is the hub score for the i-th site

1 the ith site points to the jth site

e Matrix M:
- {0 otherwise

<

1
- ETY-TY ]
COO=a2a
COmuuoO=
CO=mOeO=
FC -2 Y1-1-I
- Y-1-1-1-1
11111
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PURDUE Authority and Hub

» Vector a: g, is the authority score for the i-th site
» Vector h: h; is the hub score for the i-th site

+  Matrix M:
_ |1 the ith site points to the jth site
"o otherwise

- Recursive dependency:

aW) € I oo hw

hv) € 2 conng 8W)
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PURDUE Authority and Hub

UNIVERSITY

*Column vector a: g, is the authority score for the i-th site
*Column vector h: h; is the hub score for the i-th site

1 the ith site points to the jth site

*Matrix M:
b {0 otherwise

« Recursive dependency:

a(v) € zwepa[v] h(w) a=M"h

h(v) € % a(w) h=Ma

w € ch[v]
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PURDUE Authority and Hub

UNIVERSITY

+ Column vector a: g is the authority score for the i-th site
* Column vector h: h;is the hub score for the i-th site

e Matrix M:

{1 the ith site points to the jth site
i =

o otherwise Normalization
Procedure

- Recursive dependency:

av) € = h(w) a, =

w € palv]

hv) € % a(w)

w € ch[v]
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PURDUE Authority and Hub

UNIVERSITY

a, =M'h, } IR a, = /M Ma,
h, = f,Ma, h, :atﬂtMMTht

*  Apply SVD to matrix M

M=UZV' = Auv/ a=u;,h=v,
i
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PURDUE PageRank

UNIVERSITY

 Introduced by Page et al.

(1998) T~aigo ] 53
_ . . . 50 /
Thekw?lght is assigned by the ~ ———m o
rank of parents ‘ gl i
 Difference from HITS 0
— HITS separates Hubness & Ty 9 A I
Authority weights — =

proportional to its parents’
outdegree

— Page rank is proportional to its /_ N3 \
parents’ rank, but inversely %
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PURDUE Matrix Notation

g

__Z

_V
o

—I
g

_ |1 theithsite points to the jth site
"0 otherwise

0 otherwise

- T I-E T 1]
[-1-1-E T -1
COmuOO=
LD X-1-1-T
[—1-L X-1-1-1-]

- -1-1-1-1-1-T

0 1/51/51/51/5
10000

_ | 12120 o o
B= 0 1/31/30 13
140 1/41/4 0

120 0 0 12
0000 1

1/5

0
0
0
40
0
0
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PURDUE Matrix Notation

r : r; represents the rank score for the i-th web page

() r=aBTr
7 a : eigenvalue
(wl| 9

r : eigenvector of B

r(v) =«

|ch
wepal(v]

Finding Pagerank

- find principle eigenvector of B

a7
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PURDUE Matrix Notation

UNIVERSITY

PR ID OutLink InLink
0.304 1 2,3.4.5.7 2,3,5,
0.179 5 1,3,4,6 1,4,6,
0.166 2 1 1,3.4
0.141 3 1,2 1,4,5
0.105 4 2,3,5 1,5
0.061 7 5 1
0.045 6 1,5 5
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PURDUE Random Walk Model

UNIVERSITY

« Consider a random walk through the Web graph

0 1/51/51/51/5 0 1/5°,
1000000
1/24/20 0 0 0 O
0 1/31/30 130 0
140 1/41/40 1/40
120 0 0 120 0
00O0O0OTAIdOD0O0
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PURDUE Random Walk Model

UNIVERSITY

« Consider a random walk through the Web graph

0 1/51/51/51/5 0 1/5
1000000
121/20 ¢ 0 0 O
0 1/31/30 1/30 0
140 141140 1140
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PURDUE Random Walk Model

UNIVERSITY

« Consider a random walk through the Web graph

0 1/51/51/51/5 0 1/5
1000000
1/24/20 ¢ 0 0 O
B= 0 1/31/30 1/30 0
140 1/41/40 1140
1720 0 0 120 0
0000100

As T, what is portion of
time that the web surfer will
spend at each page?
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PURDUE Random Walk Model

UNIVERSITY

« Consider a random walk through the Web graph

0 1/51/51/51/5 0 1/5
1000000
121/20 ¢ 0 0 O

B= 0 1/31/30 1/30 0
140 141140 1140
1720 0 ¢ 120 0
0 000

p(k) : percentage of time that the
surfer will stay at the i-th site

p(k) =2 p(i)B;
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PURDUE Adding Self Loop

UNIVERSITY

 Allow surfer to decide to stay on the same place

0 1/51/51/51/5 0 1/5
1000000
1/24/20 ¢ 0 0 O
0 1/31/30 1/30
140 1/41/40 1/4

0
0
1720 0 0 120 0
0000100

B'=aB+([1-a)l
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PURDUE Problem

UNIVERSITY

* “Rank Sink” Problem
— Many Web pages have no inlinks

— Results in dangling edges in the
graph

0 1/51/51/51/5 0 15 o
1000000
1/24/20 ¢ 0 0 O
B = 0 1/31/30 1/30
140 1/41/40 1/4
1720 0 0 120
000010
0 1

0 0 0 0

© o o o o o

0
0
0
0
0

r(new page) =0
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PURDUE Problem

UNIVERSITY

* “Rank Sink” Problem
— Many Web pages have no outlinks
— Results in dangling edges in the

graph
0 1/51/51/51/5 0 4/5 o
1000000,
121/20 0 0 0 0 ,
B= 0 1/31/30 130 0
140 141/40 1/40
120 0 0 120 0 °
0000100 :
00 0 0 O 0 0 O

r(new page) =1
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PURDUE Distribution of the Mixture Model

Hi,j :l/n -
B'=¢H+(1-¢)B

I
|
|
|
\
\

\
r=B"Tr ‘

Prevents the page ranks from
being O or 1
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PURDUE Stability

 Are link analysis algorithms based on eigenvectors
stable?

— Will small changes in graph result in major changes in
outcomes?

« What if the connectivity of a portion of the graph is
changed arbitrarily?

— How will this affect the results of algorithms?

57
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PURDUE Stability of HITS

UNIVERSITY

Ng et al (2001)

« A bound on the number of hyperlinks K that can be added or deleted
from one page without affecting the authority or hubness weights
* It is possible to perturb a symmetric matrix by a quantity that grows

as O that produces a constant perturbation of the dominant
eigenvector 2

ad

k< d+—————
4 4++2a

la—-all; <a

O: eigengap A1-A2
d: maximum outdegree of G 58

PURDUE Stability of PageRank

UNIVERSITY

2 Zjev r(j)
€
V: the set of vertices touched by the perturbation

17 =7l < Ng et al (2001)

* The parameter € of the mixture model has a
stabilization role

 If the set of pages affected by the perturbation have a
small rank, the overall change will also be small

59

© 2019 Christopher W. Clifton

18



