

Department of Computer Science

CS47300: Web Information Search and Management

Collaborative Filtering: Model-Based Approaches Prof. Chris Clifton 16 October 2020 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group

ndiana

Center for

Database

Svstems

© 2020 Christopher W. Clifton

(Normalize user rating)

Experimental Data

Department of Computer Science

Datasets:

MovieRating and EachMovie

	MovieRating	EachMovie
Number of Users	500	2000
Number of Movies	1000	1682
Avg. # of rated items/User	87.7	129.6
Scale of ratings	1,2,3,4,5	1,2,3,4,5,6

Evaluation:

MAE: average absolute deviation of the predicted ratings to the actual ratings on items.

$$MAE = \frac{1}{L_{Test}} \sum_{l} |r_{(l)} - R_{o_{(l)}}(u_{(l)})|$$

Experimental Results Improved by Combining FMM and DM					
Training Users Size	Algorithms	5 Items Given	10 Items Given	20 Items Given	
100	FMM	0.829	0.822	0.807	Results on
100	FMM+DM	0.792	0772	0.741	Movie Rating
200	FMM	0.800	0.787	0.768	
	FMM+DM	0.770	0.750	0.728	
Training Users Size	Algorithms	5 Items Given	10 Items Given	20 Items Given	Results on
200 400	FMM	1.07	1.04	1.02	Each Movie
	FMM+DM	1.06	1.01	0.99	
	FMM	1.05	1.03	1.01	
	FMM+DM	1.04	1.00	0.97	

Combine Collaborative Filtering and Content-Based Filtering

Department of Computer Science

Department of Computer Science

Content-Based Filtering and Unified Filtering

Content-Based Filtering (CF):

- Generative Methods (e.g. Naïve Bayes)
- Discriminative Methods (e.g. SVM, Logistic Regression)
 - Usually more accurate
 - Can be used to combine features (e.g., actors for movies)
- Unified Filtering by combining CF and CBF:
- Linearly combine the scores from CF and CBF
- Personalized linear combination of the scores
- · Bayesian combination with collaborative ensemble learning

Experiment Results

Department of Computer Science

Table. MAE results for four filtering algorithms on EachMovie testbed. Four algorithms are pure content-based filtering (CBF), pure collaborative filtering (CF), unified filtering by combining mixture model and exponential model (UFME)

Training Users Size	Algorithms	0 Items Given	5 Items Given	10 Items Given	20 Items Given
50	CBF	1.43	1.21	1.24	1.19
	CF	1.21	1.14	1.13	1.12
	UFME	1.19	1.11	1.10	1.09
100	CBF	1.43	1.23	1.21	1.19
	CF	1.17	1.08	1.07	1.05
	UFME	1.17	1.08	1.06	1.05

Department of Computer Science

Experiment Results

 $P_{\theta}(Z_o \,|\, w)$

Table. Five most indicative words (with highest values) for 5 movie clusters, sorted by

Each column corresponds to a different movie cluster. All listed words are stemmed.

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
forev	previou	mad	inhabit	custom
depress	passion	hang	dress	hang
mate	court	rape	relat	forev
broken	forget	finish	door	water
abandon	sea	arrest	younger	food

Department of Computer Science

Summary

What we talked about so far?

- · Proposed the flexible mixture model
 - Demonstrates the power of clustering users and objects separately AND allowing them to belong to different classes
- · Proposed the decoupled model
 - Demonstrates the power of extracting preference values from the surface rating values
- Proposed the unified probabilistic model for unified filtering
 - Demonstrates the power of taking advantage of content information with limited rating information