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CS47300:  Web Information Search

and Management

Prof. Chris Clifton

9 September 2020

Probabilistic Retrieval Models

Material adapted from course created by
Dr. Luo Si, now leading Alibaba research group

Probabilistic IR topics

• Classical probabilistic retrieval model
– Probability ranking principle, etc.

– Binary independence model (≈ Naïve Bayes)

– (Okapi) BM25

• Bayesian networks for text retrieval

• Language model approach to IR
– An important emphasis in recent work

• Probabilistic methods have been a recurring theme in Information 
Retrieval
– Traditionally: neat ideas, but didn’t win on performance
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The document ranking problem

• We have a collection of documents

• User issues a query

• A list of documents needs to be returned

• Ranking method is the core of an IR system:
– In what order do we present documents to the user?

– We want the “best” document to be first, second best second, etc….

• Idea: Rank by probability of relevance of the document 
w.r.t. information need
– P(R=1|documenti, query)
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Recall a few probability basics

• For events A and B:

• Bayes’ Rule

• Odds:

Prior

p(A, B) = p(AÇ B) = p(A | B)p(B) = p(B | A)p(A)

p(A | B) =
p(B | A)p(A)

p(B)
=

p(B | A)p(A)

p(B | X)p(X)
X=A,A

å

O(A) =
p(A)

p(A)
=

p(A)

1- p(A)

Posterior

31



©Jan-20 Christopher W. Clifton 320

The Probability Ranking Principle (PRP)

“If a reference retrieval system’s response to each request is a 
ranking of the documents in the collection in order of decreasing 
probability of relevance to the user who submitted the request, where 
the probabilities are estimated as accurately as possible on the basis 
of whatever data have been made available to the system for this 
purpose, the overall effectiveness of the system to its user will be the 
best that is obtainable on the basis of those data.”

• [1960s/1970s] S. Robertson, W.S. Cooper, M.E. Maron; van Rijsbergen (1979:113); 
Manning & Schütze (1999:538)
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Probability Ranking Principle

(PRP)

Let x represent a document in the collection. 

Let R represent relevance of a document w.r.t. given (fixed) 

query and let R=1 represent relevant and R=0 not relevant.

p(R =1| x) =
p(x | R =1)p(R =1)

p(x)

p(R = 0 | x) =
p(x | R = 0)p(R = 0)

p(x)
p(x|R=1), p(x|R=0) -

probability that if a relevant 

(not relevant) document is 

retrieved, it is x.

Need to find p(R=1|x) - probability that a document x is relevant.

p(R=1),p(R=0) - prior probability

of retrieving a relevant or non-relevant

document

p(R = 0 | x)+ p(R =1| x) =1
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Probability Ranking Principle (PRP)

• Simple case: no selection costs or other utility concerns 

that would differentially weight errors

• PRP in action: Rank all documents by p(R=1|x)

• Theorem: Using the PRP is optimal, in that it minimizes 

the loss (Bayes risk) under 1/0 loss

– Provable if all probabilities correct, etc.  [e.g., Ripley 1996]

• How do we compute all those probabilities?

– Do not know exact probabilities, have to use estimates
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Probabilistic Ranking

• Basic concept:

“For a given query, if we know some documents that are 
relevant, terms that occur in those documents should be 
given greater weighting in searching for other relevant 
documents.

By making assumptions about the distribution of terms and 
applying Bayes Theorem, it is possible to derive weights 
theoretically.”

• Van Rijsbergen
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Binary Independence Model

• Traditionally used in conjunction with PRP

• “Binary” = Boolean: documents are represented as 

binary incidence vectors of terms:

– Ԧ𝑥 = (𝑥1, … , 𝑥𝑛)

– 𝑥𝑖 = 1 iff term i is present in document x.

• “Independence”: terms occur in documents 

independently  

• Different documents can be modeled as the same vector
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Binary Independence Model

• Queries: binary term incidence vectors

• Given query q, 
– for each document d need to compute p(R|q,d).

– replace with computing p(R|q,x) where x is binary 
term incidence vector representing d.

– Interested only in ranking

• Use odds and Bayes’ Rule:

O(R | q, x) =
p(R =1| q, x)

p(R = 0 | q, x)
=

p(R =1| q)p(x | R =1, q)

p(x | q)

p(R = 0 | q)p(x | R = 0, q)

p(x | q) 43
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Binary Independence Model

• Using Independence Assumption:

O(R | q, x) = O(R | q) ×
p(xi | R =1, q)

p(xi | R = 0,q)
i=1

n

Õ

p(x | R =1,q)

p(x | R = 0,q)
=

p(xi | R =1,q)

p(xi | R = 0,q)
i=1

n

Õ

O(R | q, x) =
p(R =1| q, x)

p(R = 0 | q, x)
=

p(R =1| q)

p(R = 0 | q)
×

p(x | R =1,q)

p(x | R = 0,q)

Constant for a 

given query
Needs estimation
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Binary Independence Model

• Since xi is either 0 or 1:

O(R | q, x) = O(R | q) ×
p(xi =1| R =1, q)

p(xi =1| R = 0,q)
xi=1

Õ ×
p(xi = 0 | R =1,q)

p(xi = 0 | R = 0, q)
xi=0

Õ

• Let pi = p(xi =1| R =1,q); ri = p(xi =1| R = 0,q);

• Assume, for all terms not occurring in the query (qi=0) ii rp 

O(R | q, x) = O(R | q) ×
p(xi | R =1, q)

p(xi | R = 0,q)
i=1

n

Õ

O(R | q, x) = O(R | q) ×
pi

rixi=1
qi=1

Õ ×
(1- pi )

(1- ri )xi=0
qi=1

Õ
45
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Model Parameters

document relevant (R=1) not relevant 

(R=0)

term present xi = 1 pi ri

term absent xi = 0 (1 – pi) (1 – ri)
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All matching terms
Non-matching 

query terms

Binary Independence Model

All matching terms
All query terms

O(R | q, x) = O(R | q) ×
pi

rixi=1
qi=1

Õ ×
1- ri

1- pi

×
1- pi

1- ri

æ

è
ç

ö

ø
÷

xi=1
qi=1

Õ
1- pi

1- rixi=0
qi=1

Õ

O(R | q, x) = O(R | q) ×
pi (1- ri )

ri(1- pi )xi=qi=1

Õ ×
1- pi

1- riqi=1

Õ

O(R | q, x) = O(R | q) ×
pi

rixi=qi=1

Õ ×
1- pi

1- rixi=0
qi=1

Õ
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Binary Independence Model

Constant for

each query

Only quantity to be estimated 

for rankings
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Binary Independence Model

All boils down to computing RSV.
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So, how do we compute ci’s from our data ?

The ci are log odds ratios

They function as the term weights in this model
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Binary Independence Model

• Estimating RSV coefficients in theory

• For each term i look at this table of document counts:

• Estimates: 𝑝𝑖 ≈
𝑠

𝑆
, 𝑟𝑖 ≈

𝑛−𝑠

𝑁−𝑆

𝑐𝑖 ≈ 𝐾 𝑁, 𝑛, 𝑆, 𝑠 = log
Τ𝑠 (𝑆 − 𝑠)

Τ(𝑛 − 𝑠) (𝑁 − 𝑛 − 𝑆 + 𝑠)
51

Documents 
 

Relevant Non-Relevant Total 

xi=1 s n-s n 

xi=0 S-s N-n-S+s N-n 

Total S N-S N 
 

 

For now,

assume no

zero terms.

Estimation – key challenge

• If non-relevant documents are approximated by the whole 

collection, then ri (prob. of occurrence in non-relevant 

documents for query) is n/N and

log
1 − 𝑟𝑖
𝑟𝑖

= log
𝑁 − 𝑛 − 𝑆 + 𝑠

𝑛 − 𝑠
≈ log

𝑁 − 𝑛

𝑛
≈ log

𝑁

𝑛
= 𝐼𝐷𝐹!
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Estimation – key challenge

• pi (probability of occurrence in relevant documents) cannot be 
approximated as easily

• pi can be estimated in various ways:
– from relevant documents if know some

• Relevance weighting can be used in a feedback loop

– constant (Croft and Harper combination match) – then just get idf
weighting of terms (with pi=0.5)

𝑅𝑆𝑉 = 

𝑥𝑖=𝑞𝑖=1

log
𝑁

𝑛𝑖

– proportional to prob. of occurrence in collection
• Greiff (SIGIR 1998) argues for 1/3 + 2/3 dfi/N
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