
©Jan-20 Christopher W. Clifton 120

CS47300: Web Information Search and

Management

Web Crawling

Prof. Chris Clifton

18 September 2020

Some slides courtesy Croft et al.

Web Crawling

• Web crawlers spend a lot of time waiting for responses to
requests

• To reduce this inefficiency, web crawlers use threads and
fetch hundreds of pages at once

• Crawlers could potentially flood sites with requests for
pages

• To avoid this problem, web crawlers use politeness
policies

– e.g., delay between requests to same web server

©Jan-20 Christopher W. Clifton 220

URL frontier: two main considerations

• Politeness: do not hit a web server too frequently

• Freshness: crawl some pages more often than others

– E.g., pages (such as News sites) whose content changes often

These goals may conflict with each other.

(E.g., simple priority queue fails – many links out of a page go
to its own site, creating a burst of accesses to that site.)

5

Sec. 20.2.3

Explicit and implicit politeness

• Explicit politeness: specifications from webmasters on

what portions of site can be crawled

– robots.txt

• Implicit politeness: even with no specification, avoid

hitting any site too often

Sec. 20.2

6

©Jan-20 Christopher W. Clifton 320

Controlling Crawling

• Even crawling a site slowly will anger some web server

administrators, who object to any copying of their data

• Robots.txt file can be used to control crawlers

Robots.txt example

• No robot should visit any URL starting with
"/yoursite/temp/", except the robot called “searchengine":

User-agent: *

Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Sec. 20.2.1

9

©Jan-20 Christopher W. Clifton 420

Politeness – challenges

• Even if we restrict only one thread to fetch from a host,

can hit it repeatedly

• Common heuristic: insert time gap between

successive requests to a host that is >> time for most

recent fetch from that host

Sec. 20.2.3

11

Freshness

• Web pages are constantly being added, deleted, and

modified

• Web crawler must continually revisit pages it has already

crawled to see if they have changed in order to maintain

the freshness of the document collection

– stale copies no longer reflect the real contents of the web

pages

©Jan-20 Christopher W. Clifton 520

Freshness

• HTTP protocol has a special request type called HEAD

that makes it easy to check for page changes

– returns information about page, not page itself

Freshness

• Not possible to constantly check all pages

– must check important pages and pages that change frequently

• Freshness is the proportion of pages that are fresh

• Optimizing for this metric can lead to bad decisions, such

as not crawling popular sites

• Age is a better metric

©Jan-20 Christopher W. Clifton 620

Freshness vs. Age

Age

• Expected age of a page t days after it was last crawled:

• Web page updates follow the Poisson distribution on

average

– time until the next update is governed by an exponential

distribution

©Jan-20 Christopher W. Clifton 720

Age

• The older a page gets, the more it costs not to crawl it

– e.g., expected age with mean change frequency λ = 1/7 (one

change per week)

Back queue selector

B back queues

Single host on each

Crawl thread requesting URL

URL frontier: Mercator scheme

Biased front queue selector

Back queue router

Prioritizer

K front queues

URLs

Sec. 20.2.3

19

©Jan-20 Christopher W. Clifton 820

Mercator URL frontier

• URLs flow in from the top into the frontier

• Front queues manage prioritization

• Back queues enforce politeness

• Each queue is FIFO

Sec. 20.2.3

20

Front queues

Prioritizer

1 K

Biased front queue selector

Back queue router

Sec. 20.2.3

21

©Jan-20 Christopher W. Clifton 920

Front queues

• Prioritizer assigns to URL an integer priority between 1 and K

– Appends URL to corresponding queue

• Heuristics for assigning priority

– Refresh rate sampled from previous crawls

– Application-specific (e.g., “crawl news sites more often”)

Sec. 20.2.3

22

Biased front queue selector

• When a back queue requests a URL (in a sequence to be

described): picks a front queue from which to pull a URL

• This choice can be round robin biased to queues of higher

priority, or some more sophisticated variant

– Can be randomized

Sec. 20.2.3

23

©Jan-20 Christopher W. Clifton 1020

Back queues

Biased front queue selector

Back queue router

Back queue selector

1 B

Heap

Sec. 20.2.3

24

Back queue heap

• One entry for each back queue

• The entry is the earliest time te at which the host

corresponding to the back queue can be hit again

• This earliest time is determined from

– Last access to that host

– Any time buffer heuristic we choose

Sec. 20.2.3

26

©Jan-20 Christopher W. Clifton 1120

Back queue processing

• A crawler thread seeking a URL to crawl:

• Extracts the root of the heap

• Fetches URL at head of corresponding back queue q (look up
from table)

• Checks if queue q is now empty – if so, pulls a URL v from
front queues
– If there’s already a back queue for v’s host, append v to it and pull

another URL from front queues, repeat

– Else add v to q

• When q is non-empty, create heap entry for it

27

Sec. 20.2.3

Focused Crawling

• Attempts to download only those pages that are about a

particular topic

– used by vertical search applications

• Rely on the fact that pages about a topic tend to have

links to other pages on the same topic

– popular pages for a topic are typically used as seeds

• Crawler uses text classifier to decide whether a page is

on topic

