J 7 PURDUE | sumenttcomterscons

UNIVERSITY

CS47300: Web Information Search and
Management

Web Crawling
Prof. Chris Clifton
18 September 2020
Some slides courtesy Croft et al.

Indiana
Center for

Database

27 _
PURDUE Web Crawling

Department of Computer Science

» Web crawlers spend a lot of time waiting for responses to
requests

 To reduce this inefficiency, web crawlers use threads and
fetch hundreds of pages at once

« Crawlers could potentially flood sites with requests for
pages

» To avoid this problem, web crawlers use politeness
policies
—e.g., delay between requests to same web server

© 2020 Christopher W. Clifton

2

PURDUE URL frontier: two main considerations
« Politeness: do not hit a web server too frequently
» Freshness: crawl some pages more often than others
— E.g., pages (such as News sites) whose content changes often
These goals may conflict with each other.
(E.g., simple priority queue fails — many links out of a page go
to its own site, creating a burst of accesses to that site.)

27
PORDUE Explicit and implicit politeness

Department of Computer Science

» Explicit politeness: specifications from webmasters on
what portions of site can be crawled

—robots.txt

 Implicit politeness: even with no specification, avoid
hitting any site too often

© 2020 Christopher W. Clifton

27 _ _
PORDYE Controlling Crawling
« Even crawling a site slowly will anger some web server
administrators, who object to any copying of their data

* Robots.txt file can be used to control crawlers

User-agent: *

Disallow: /private/
Disallow: /confidential/
Disallow: /other/

Allow: /other/public/

User—agent: FavoredCrawler
Disallow:

Sitemap: http://mysite.com/sitemap.xml.gz

27
PURDUE Robots.txt example

Department of Computer Science

* No robot should visit any URL starting with
"lyoursite/temp/", except the robot called “searchengine":

User—-agent: *
Disallow: /yoursite/temp/

User—-agent: searchengine
Disallow:

© 2020 Christopher W. Clifton

27
PORDYE Politeness — challenges

Department of Computer Science

» Even if we restrict only one thread to fetch from a host,
can hit it repeatedly

« Common heuristic: insert time gap between
successive requests to a host that is >> time for most
recent fetch from that host

11

27
PORDUE Freshness
* Web pages are constantly being added, deleted, and
modified
» Web crawler must continually revisit pages it has already
crawled to see if they have changed in order to maintain
the freshness of the document collection

— stale copies no longer reflect the real contents of the web
pages

© 2020 Christopher W. Clifton

27
PURDUE Freshness

Department of Computer Science

« HTTP protocol has a special request type called HEAD
that makes it easy to check for page changes
— returns information about page, not page itself

Client request: HEAD /csinfo/people.html HTTP/1.1
Host: www.cs.umass.edu

HTTP/1.1 200 OK

Date: Thu, 03 Apr 2008 05:17:54 GMT

Server: Apache/2.0.52 (Cent0S)

Last-Modified: Fri, 04 Jan 2008 15:28:39% GMT
Server response: ETag: "239c¢33-2576-2a2837c0"

Accept-Ranges: bytes

Content-Length: 9590

Connection: close

Content-Type: text/html; charset=IS50-8859-1

27
PURDUE Freshness

Department of Computer Science

» Not possible to constantly check all pages
— must check important pages and pages that change frequently

» Freshness is the proportion of pages that are fresh

» Optimizing for this metric can lead to bad decisions, such
as not crawling popular sites

* Age is a better metric

© 2020 Christopher W. Clifton

27
PORDYE Freshness vs. Age

Department of Computer Science

freshness

7

age
erawl updates erawl update erawl
PURDUE Age

Department of Computer Science

« Expected age of a page t days after it was last crawled:
t
Age(A, 1) = f P(page changed at time x)(t — x)dx
0

* Web page updates follow the Poisson distribution on
average

— time until the next update is governed by an exponential
distribution

ot
Age(\,t) = / e M (t — z)dx
0

© 2020 Christopher W. Clifton

2

PURDUE Ag e

UNIVERSITY

Department of Computer Science

« The older a page gets, the more it costs not to crawl it

—e.g., expected age with mean change frequency A = 1/7 (one
change per week)

2.5
1.5

0.51

27
PURDUE URL frontier: Mercator scheme
Department of Computer Science U RLS
l
Prioritizer

IVITITIITY

K front queues

LT

Biased front queue selector

Back queue router
$$$$ I 1T 11171

B back queues
Sl e n e
YYVVYVVYYVVYVVYY

Back queue selector

Crawl thread |J'equesting URL

19

© 2020 Christopher W. Clifton

27
PURDUE Mercator URL frontier

Department of Computer Science

* URLSs flow in from the top into the frontier
* Front gueues manage prioritization

« Back queues enforce politeness

» Each queue is FIFO

20

27
PORDUE Front queues

Department of Computer Science

!
Prioritizer

Biased front queue selector

Back queue router
!

21

© 2020 Christopher W. Clifton

2

PORDYE Front queues

Department of Computer Science

— Appends URL to corresponding queue
» Heuristics for assigning priority
— Refresh rate sampled from previous crawls
— Application-specific (e.g., “crawl news sites more often”)

* Prioritizer assigns to URL an integer priority between 1 and K

22

a5

PORDUE Biased front queue selector

* When a back queue requests a URL (in a sequence to be
described): picks a front queue from which to pull a URL

» This choice can be round robin biased to queues of higher
priority, or some more sophisticated variant
— Can be randomized

23

© 2020 Christopher W. Clifton

UNIVERSITY

Department of Computer Science

Back queue heap

* One entry for each back queue
* The entry is the earliest time t, at which the host
corresponding to the back queue can be hit again
» This earliest time is determined from
— Last access to that host
— Any time buffer heuristic we choose

PORDYE Back queues
Biased front queue selector
Back queue router
1 B
e o o o o
D
Back queue selector Heap .
|

PURDUE

26

© 2020 Christopher W. Clifton

10

27 |
PORDYE Back queue processing
» A crawler thread seeking a URL to crawl:
Extracts the root of the heap

Fetches URL at head of corresponding back queue g (look up
from table)

Checks if queue g is now empty — if so, pulls a URL v from
front queues

— If there’s already a back queue for v’s host, append v to it and pull
another URL from front queues, repeat

— Else add vto q
When @ is non-empty, create heap entry for it

27

27 _
PURDUE Focused Crawling

Department of Computer Science

+ Attempts to download only those pages that are about a
particular topic

— used by vertical search applications

« Rely on the fact that pages about a topic tend to have
links to other pages on the same topic
— popular pages for a topic are typically used as seeds

» Crawler uses text classifier to decide whether a page is
on topic

© 2020 Christopher W. Clifton

