
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Views and Triggers

Prof. Chris Clifton

30 November 2021

View

• Expression that describes a table without creating it

– Outcome is a named entity that looks and acts like a table

• Suggestions for how to think of this:

VIEW

CREATE TABLE average AS

SELECT assignment, avg(score)

FROM grades

GROUP BY assignment

2

Student Assignment Score

Clifton 2 17

Clifton 3 22

… … …

Assignment Avg(score)

2 17.3

3 24.1

… …

©Jan-21 Christopher W. Clifton 220

Theory behind views

• Every relational query returns a relation

– Possibly a single row, single column relation

• Query result could be stored in a table

– Use in future queries

• View: Do this “on the fly”

– Generate the result every time the view is used

3

Using Views

• Access control: Limit who sees data

– SQL GRANT controls what users can access/modify a table

– Also works for views (doesn’t give access to underlying table)

• Different logical views of the same data

– Schema migration

• “short cuts”

4

©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan4.5Database System Concepts - 7th Edition

View Definition

 A view is defined using the create view statement which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view

name is represented by v.

 Once a view is defined, the view name can be used to refer to the virtual

relation that the view generates.

 View definition is not the same as creating a new relation by evaluating

the query expression

• Rather, a view definition causes the saving of an expression; the

expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan4.6Database System Concepts - 7th Edition

View Definition and Use

 A view of instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

 Find all instructors in the Biology department

select name
from faculty
where dept_name = 'Biology'

 Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as
select dept_name, sum (salary)
from instructor

group by dept_name;

©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan4.7Database System Concepts - 7th Edition

Views Defined Using Other Views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation v2 if v2 is

used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either v1

depends directly to v2 or there is a path of dependencies from v1 to v2

 A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan4.8Database System Concepts - 7th Edition

Views Defined Using Other Views

 create view physics_fall_2017 as

select course.course_id, sec_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics'

and section.semester = 'Fall'

and section.year = '2017’;

 create view physics_fall_2017_watson as

select course_id, room_number

from physics_fall_2017

where building= 'Watson';

©Jan-21 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan4.9Database System Concepts - 7th Edition

View Expansion

 Expand the view :

create view physics_fall_2017_watson as

select course_id, room_number

from physics_fall_2017

where building= 'Watson'

 To:
create view physics_fall_2017_watson as

select course_id, room_number

from (select course.course_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics'

and section.semester = 'Fall'

and section.year = '2017')

where building= 'Watson';

©Silberschatz, Korth and Sudarshan4.10Database System Concepts - 7th Edition

View Expansion (Cont.)

 A way to define the meaning of views defined in terms of other views.

 Let view v1 be defined by an expression e1 that may itself contain uses

of view relations.

 View expansion of an expression repeats the following replacement

step:

repeat

Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will terminate

©Jan-21 Christopher W. Clifton 620

View Limitations

• Performance

– Materialized views

• Update

– Insert

– Modify

– Delete

• Solutions to come

– Triggers

11

©Silberschatz, Korth and Sudarshan4.12Database System Concepts - 7th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier

insert into faculty

values ('30765', 'Green', 'Music');

 This insertion must be represented by the insertion into the instructor
relation

• Must have a value for salary.

 Two approaches

• Reject the insert

• Inset the tuple

('30765', 'Green', 'Music', null)

into the instructor relation

©Jan-21 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan4.13Database System Concepts - 7th Edition

Some Updates Cannot be Translated Uniquely

 create view instructor_info as

select ID, name, building

from instructor, department

where instructor.dept_name= department.dept_name;

 insert into instructor_info

values ('69987', 'White', 'Taylor');

 Issues

• Which department, if multiple departments in Taylor?

• What if no department is in Taylor?

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 7th Edition

And Some Not at All

 create view history_instructors as

select *

from instructor

where dept_name= 'History';

 What happens if we insert

('25566', 'Brown', 'Biology', 100000)

into history_instructors?

©Jan-21 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 7th Edition

View Updates in SQL

 Most SQL implementations allow updates only on simple views

• The from clause has only one database relation.

• The select clause contains only attribute names of the relation, and

does not have any expressions, aggregates, or distinct

specification.

• Any attribute not listed in the select clause can be set to null

• The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 7th Edition

Materialized Views

 Certain database systems allow view relations to be physically stored.

• Physical copy created when the view is defined.

• Such views are called Materialized view:

 If relations used in the query are updated, the materialized view result

becomes out of date

• Need to maintain the view, by updating the view whenever the

underlying relations are updated.

©Jan-21 Christopher W. Clifton 920

Materialized Views and Query

Processing

• Materialized views can speed query processing

– Allows data that doesn’t match good design standards, e.g., not

normalized, but matches common queries

• Logically data follows design

– But physical copy that doesn’t

• Some work in automating creating of materialized views

to support queries

17

Triggers
Prof. Chris Clifton

30 November 2021

©Jan-21 Christopher W. Clifton 1020

Triggers

• Sometimes we want to take actions when a condition

occurs in the database

– Low balance in an account: Send warning

– Update to a view that the DBMS can’t figure out, but we know

how to do

• One option: Program into every transaction

– And get it right every time

• Option two: Triggers

19

Triggers

• Idea: Execute code on an event
CREATE TRIGGER low_balance_warning

AFTER UPDATE OF balance ON accounts

FOR EACH ROW

WHEN (new.balance < 100)
BEGIN

<action to be taken>

END

• Note: Syntax and capabilities vary considerably between
systems

20

©Jan-21 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 7th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

• For example, after update of takes on grade

 Values of attributes before and after an update can be referenced

• referencing old row as : for deletes and updates

• referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as extra
constraints. For example, convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row

when (nrow.grade = ' ')
begin atomic

set nrow.grade = null;
end;

©Silberschatz, Korth and Sudarshan4.22Database System Concepts - 7th Edition

Trigger to Maintain credits_earned value

 create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F' and nrow.grade is not null

and (orow.grade = 'F' or orow.grade is null)
begin atomic

update student
set tot_cred= tot_cred +

(select credits
from course
where course.course_id= nrow.course_id)

where student.id = nrow.id;
end;

©Jan-21 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan4.23Database System Concepts - 7th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected row, a single

action can be executed for all rows affected by a transaction

• Use for each statement instead of for each row

• Use referencing old table or referencing new table to refer

to temporary tables (called transition tables) containing the

affected rows

• Can be more efficient when dealing with SQL statements that update

a large number of rows

Triggers for View Update

• Given a table employee(name, address, dept, salary)
– CREATE VIEW employee_directory AS SELECT name, dept FROM

employee

• What happens when someone tries to insert an employee in
employee_directory?
CREATE TRIGGER ViewUpdate

INSTEAD OF INSERT ON employee_directory

FOR EACH ROW
BEGIN

INSERT INTO employee VALUES (:new.name, NULL, :new.dept, NULL)

END

24

©Jan-21 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan4.25Database System Concepts - 7th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as

• Maintaining summary data (e.g., total salary of each department)

• Replicating databases by recording changes to special relations (called
change or delta relations) and having a separate process that applies the
changes over to a replica

 There are better ways of doing these now:

• Databases today provide built in materialized view facilities to maintain
summary data

• Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in many cases

• Define methods to update fields

• Carry out actions as part of the update methods instead of
through a trigger

©Silberschatz, Korth and Sudarshan4.26Database System Concepts - 7th Edition

When Not To Use Triggers (Cont.)

 Risk of unintended execution of triggers, for example, when

• Loading data from a backup copy

• Replicating updates at a remote site

• Trigger execution can be disabled before such actions.

 Other risks with triggers:

• Error leading to failure of critical transactions that set off the trigger

• Cascading execution

