
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Views and Triggers

Prof. Chris Clifton

30 November 2021

View

• Expression that describes a table without creating it

– Outcome is a named entity that looks and acts like a table

• Suggestions for how to think of this:

VIEW

CREATE TABLE average AS

SELECT assignment, avg(score)

FROM grades

GROUP BY assignment

2

Student Assignment Score

Clifton 2 17

Clifton 3 22

… … …

Assignment Avg(score)

2 17.3

3 24.1

… …



©Jan-21 Christopher W. Clifton 220

Theory behind views

• Every relational query returns a relation

– Possibly a single row, single column relation

• Query result could be stored in a table

– Use in future queries

• View:  Do this “on the fly”

– Generate the result every time the view is used

3

Using Views

• Access control:  Limit who sees data

– SQL GRANT controls what users can access/modify a table

– Also works for views (doesn’t give access to underlying table)

• Different logical views of the same data

– Schema migration

• “short cuts”

4



©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan4.5Database System Concepts - 7th Edition

View Definition

 A view is defined using the create view statement which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression.  The view 

name is represented by v.

 Once a view is defined, the view name can be used to refer to the virtual 

relation that the view generates.

 View definition is not the same as creating a new relation by evaluating 

the query expression  

• Rather, a view definition causes the saving of an expression; the 

expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan4.6Database System Concepts - 7th Edition

View Definition and Use

 A view of instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

 Find all instructors in the Biology department

select name
from faculty
where dept_name = 'Biology'

 Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as
select dept_name, sum (salary)
from instructor

group by dept_name;



©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan4.7Database System Concepts - 7th Edition

Views Defined Using Other Views

 One view may be used in the expression defining another view 

 A view relation v1 is said to depend directly on a view relation v2 if v2 is 

used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either v1 

depends directly to v2 or there is a path of dependencies from v1 to v2

 A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan4.8Database System Concepts - 7th Edition

Views Defined Using Other Views

 create view physics_fall_2017 as

select course.course_id, sec_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics'

and section.semester = 'Fall'

and section.year = '2017’;

 create view physics_fall_2017_watson as

select course_id, room_number

from physics_fall_2017

where building= 'Watson';



©Jan-21 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan4.9Database System Concepts - 7th Edition

View Expansion

 Expand  the view :

create view physics_fall_2017_watson as

select course_id, room_number

from physics_fall_2017

where building= 'Watson'

 To:
create view physics_fall_2017_watson as

select course_id, room_number

from (select course.course_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics'

and section.semester = 'Fall'

and section.year = '2017')

where building= 'Watson';

©Silberschatz, Korth and Sudarshan4.10Database System Concepts - 7th Edition

View Expansion (Cont.)

 A way to define the meaning of views defined in terms of other views.

 Let view v1 be defined by an expression e1 that may itself contain uses 

of view relations.

 View expansion of an expression repeats the following replacement 

step:

repeat

Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will terminate



©Jan-21 Christopher W. Clifton 620

View Limitations

• Performance

– Materialized views

• Update

– Insert

– Modify

– Delete

• Solutions to come

– Triggers

11

©Silberschatz, Korth and Sudarshan4.12Database System Concepts - 7th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier

insert into faculty 

values ('30765', 'Green', 'Music');

 This insertion must be represented by the insertion into  the instructor
relation

• Must have a  value for salary.

 Two approaches

• Reject the insert

• Inset the tuple

('30765', 'Green', 'Music', null)

into the instructor relation



©Jan-21 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan4.13Database System Concepts - 7th Edition

Some Updates Cannot be Translated Uniquely

 create view instructor_info as

select ID, name, building

from instructor, department

where instructor.dept_name= department.dept_name;

 insert into instructor_info

values ('69987', 'White', 'Taylor');

 Issues

• Which department, if multiple departments in Taylor?

• What if no department is in Taylor?

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 7th Edition

And Some Not at All

 create view history_instructors as

select *

from instructor

where dept_name= 'History';

 What happens if we insert 

('25566', 'Brown', 'Biology', 100000)

into history_instructors?



©Jan-21 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 7th Edition

View Updates in SQL 

 Most SQL implementations allow updates only on simple views 

• The from clause has only one database relation.

• The select clause contains only attribute names of the relation, and 

does not have any expressions, aggregates, or distinct 

specification.

• Any attribute not listed in the select clause can be set to null

• The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 7th Edition

Materialized Views

 Certain database systems allow view relations to be physically stored.

• Physical copy created when the view is defined.

• Such views are called Materialized view:

 If relations used in the query are updated, the materialized view result 

becomes out of date

• Need to maintain the view, by updating the view whenever the 

underlying relations are updated.



©Jan-21 Christopher W. Clifton 920

Materialized Views and Query 

Processing

• Materialized views can speed query processing

– Allows data that doesn’t match good design standards, e.g., not 

normalized, but matches common queries

• Logically data follows design

– But physical copy that doesn’t

• Some work in automating creating of materialized views 

to support queries

17

Triggers
Prof. Chris Clifton

30 November 2021



©Jan-21 Christopher W. Clifton 1020

Triggers

• Sometimes we want to take actions when a condition 

occurs in the database

– Low balance in an account:  Send warning

– Update to a view that the DBMS can’t figure out, but we know 

how to do

• One option:  Program into every transaction

– And get it right every time

• Option two:  Triggers

19

Triggers

• Idea:  Execute code on an event
CREATE TRIGGER low_balance_warning

AFTER UPDATE OF balance ON accounts

FOR EACH ROW

WHEN ( new.balance < 100 )
BEGIN

<action to be taken>

END

• Note:  Syntax and capabilities vary considerably between 
systems

20



©Jan-21 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 7th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

• For example, after update of takes on grade

 Values of attributes before and after an update can be referenced

• referencing old row as : for deletes and updates

• referencing new row as  : for inserts and updates

 Triggers can be activated before an event, which can serve as extra 
constraints.  For example,  convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row

when (nrow.grade = ' ')
begin atomic

set nrow.grade = null;
end;

©Silberschatz, Korth and Sudarshan4.22Database System Concepts - 7th Edition

Trigger to Maintain credits_earned value

 create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F' and nrow.grade is not null

and (orow.grade = 'F' or orow.grade is null)
begin atomic

update student
set tot_cred= tot_cred + 

(select credits
from course
where course.course_id= nrow.course_id)

where student.id = nrow.id;
end;



©Jan-21 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan4.23Database System Concepts - 7th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected row, a single 

action can be executed for all rows affected by a transaction

• Use     for each statement      instead of    for each row

• Use     referencing old table or   referencing new table to refer 

to temporary tables  (called transition tables) containing the 

affected rows

• Can be more efficient when dealing with SQL statements that update 

a large number of rows

Triggers for View Update

• Given a table employee(name, address, dept, salary)
– CREATE VIEW employee_directory AS SELECT name, dept FROM 

employee

• What happens when someone tries to insert an employee in 
employee_directory?
CREATE TRIGGER ViewUpdate

INSTEAD OF INSERT ON employee_directory

FOR EACH ROW
BEGIN

INSERT INTO employee VALUES ( :new.name, NULL, :new.dept, NULL )

END

24



©Jan-21 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan4.25Database System Concepts - 7th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as 

• Maintaining summary data (e.g., total salary of each department)

• Replicating databases by recording changes to special relations (called 
change or delta relations) and having a separate process that applies the 
changes over to a replica 

 There are better ways of doing these now:

• Databases today provide built in materialized view facilities to maintain 
summary data

• Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in many cases

• Define methods to update fields

• Carry out actions as part of the update methods instead of 
through a trigger 

©Silberschatz, Korth and Sudarshan4.26Database System Concepts - 7th Edition

When Not To Use Triggers (Cont.)

 Risk of unintended execution of triggers, for example, when

• Loading data from a backup copy

• Replicating updates at a remote site

• Trigger execution can be disabled before such actions.

 Other risks with triggers:

• Error leading to failure of critical transactions that set off the trigger

• Cascading execution


