
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Storing the Data

Prof. Chris Clifton

21 September 2021

Hardware:  Key Takeaways

• Database must reside on non-volatile storage
– Can cache in faster storage

• Non-volatile storage slow
– But accessing a lot not much different than accessing a little

– Therefore we read/write as large blocks (typically 4kb)

• Abstract performance as: α+βb
– α is seek time (abstraction of read/write setup overhead)

– β is transfer rate

– b is block size

• Rotating media:  seek can dominate (but caching, sequential reads reduce this)

• Solid state:  transfer dominates
– but erasure, protocol overheads make “seek” more than you’d expect

• Writes typically worse than reads
– Not “done” until safe in non-volatile storage, so reduces caching benefits

2



©Jan-21 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan1.4Database System Concepts - 7th Edition

File Organization

 The database is stored as a collection of files.  Each file is a sequence of records.  A 

record is a sequence of fields.

 One approach

• Assume record size is fixed

• Each file has records of one particular type only

• Different files are used for different relations

This case is easiest to implement; will consider variable length records later

 We assume that records are smaller than a disk block

.

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 5

Record Formats:  Fixed Length

 Information about field types same for all 
records in a file; stored in system catalogs.

 Finding i’th field does not require scan of 
record.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2



©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan1.6Database System Concepts - 7th Edition

Fixed-Length Records

 Simple approach:

• Store record i starting from byte n  (i – 1), where n is the size of each record.

• Record access is simple but records may cross blocks

 Modification: do not allow records to cross block boundaries

©Silberschatz, Korth and Sudarshan1.7Database System Concepts - 7th Edition

Fixed-Length Records

 Deletion of record i:  alternatives:

• move records i + 1, . . ., n to i, . . . , n – 1

• move record n to i

• do not move records, but link all free records on a free list

Record 3 deleted



©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan1.8Database System Concepts - 7th Edition

Fixed-Length Records

 Deletion of record i:  alternatives:

• move records i + 1, . . ., n to i, . . . , n – 1

• move record n to i

• do not move records, but link all free records on a free list

Record 3 deleted and replaced by record 11

©Silberschatz, Korth and Sudarshan1.9Database System Concepts - 7th Edition

Fixed-Length Records

 Deletion of record i:  alternatives:

• move records i + 1, . . ., n to i, . . . , n – 1

• move record n to i

• do not move records, but link all free records on a free list



©Jan-21 Christopher W. Clifton 520

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 10

Record Formats: Variable Length

 Two alternative formats (# fields is fixed):

* Second offers direct access to i’th field, efficient storage 
of nulls (special don’t know value); small directory overhead. 

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1                    F2                   F3                    F4

F1             F2             F3             F4

Array of Field Offsets

©Silberschatz, Korth and Sudarshan1.11Database System Concepts - 7th Edition

Variable-Length Records

 Variable-length records arise in database systems in several ways:

• Storage of multiple record types in a file.

• Record types that allow variable lengths for one or more fields such as strings 

(varchar)

• Record types that allow repeating fields (used in some older data models).

 Attributes are stored in order

 Variable length attributes represented by fixed size (offset, length), with actual data 

stored after all fixed length attributes

 Null values represented by null-value bitmap



©Jan-21 Christopher W. Clifton 620

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 12

Page Formats: Fixed Length Records

Record id = <page id, slot #>.  In first 
alternative, moving records for free space 
management changes rid; may not be acceptable.

Slot 1
Slot 2

Slot N

. . . . . .

N M10. . .

M  ...    3  2  1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

number 
of records

number
of slots

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 13

Page Formats: Variable Length Records

Can move records on page without changing rid; 
so, attractive for fixed-length records too.

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . .            2         1

20 16 24 N

# slots



©Jan-21 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan1.14Database System Concepts - 7th Edition

Variable-Length Records: Slotted Page Structure

 Slotted page header contains:

• number of record entries

• end of free space in the block

• location and size of each record

 Records can be moved around within a page to keep them contiguous with no empty 

space between them; entry in the header must be updated.

 Refer to a record by block and entry#

©Silberschatz, Korth and Sudarshan1.15Database System Concepts - 7th Edition

Storing Large Objects

 E.g., blob/clob types

 Records must be smaller than pages

 Alternatives:

• Store as files in file systems

• Store as files managed by database

• Break into pieces and store in multiple tuples in separate relation

 PostgreSQL TOAST



©Jan-21 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan1.16Database System Concepts - 7th Edition

Organization of Records in Files

 Heap – record can be placed anywhere in the file where there is space

 Sequential – store records in sequential order, based on the value of the search key of 

each record

 In a  multitable clustering file organization records of several different relations can 

be stored in the same file

• Motivation: store related records on the same block to minimize I/O

 B+-tree file organization

• Ordered storage even with inserts/deletes

• More on this in Chapter 14

 Hashing – a hash function computed on search key; the result specifies in which block 

of the file the record should be placed

• More on this in Chapter 14

©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 7th Edition

Heap File Organization

 Records can be placed anywhere in the file where there is free space

 Records usually do not move once allocated

 Important to be able to efficiently find free space within file

 Free-space map

• Array with 1 entry per block.  Each entry is a few bits to a byte, and records fraction of 
block that is free

• In example below, 3 bits per block, value divided by 8 indicates fraction of block that is 
free

• Can have second-level free-space map

• In example below, each entry stores maximum from 4 entries of first-level free-space 
map

 Free space map written to disk periodically, OK to have wrong (old) values for some entries 
(will be detected and fixed)



©Jan-21 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan1.18Database System Concepts - 7th Edition

Sequential File Organization

 Suitable for applications that require sequential processing of the entire file 

 The records in the file are ordered by a search-key

©Silberschatz, Korth and Sudarshan1.19Database System Concepts - 7th Edition

Sequential File Organization (Cont.)

 Deletion – use pointer chains

 Insertion –locate the position where the record 

is to be inserted

• if there is free space insert there 

• if no free space, insert the record in an 

overflow block

• In either case, pointer chain must be 

updated

 Need to reorganize the file

from time to time to restore

sequential order



©Jan-21 Christopher W. Clifton 1020

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 20

Unordered (Heap) Files

 Simplest file structure contains records in no 
particular order.

 As file grows and shrinks, disk pages are 
allocated and de-allocated.

 To support record level operations, we must:

 keep track of the pages in a file

 keep track of free space on pages

 keep track of the records on a page

 There are many alternatives for keeping track 
of this.

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 21

Heap File Implemented as a List 

 The header page id and Heap file name must 
be stored someplace.

 Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Pages with
Free Space

Full Pages



©Jan-21 Christopher W. Clifton 1120

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 22

Heap File Using a Page Directory

 The entry for a page can include the number 
of free bytes on the page.

 The directory is a collection of pages; linked 
list implementation is just one alternative.

 Much smaller than linked list of all HF pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

©Silberschatz, Korth and Sudarshan1.23Database System Concepts - 7th Edition

Multitable Clustering File Organization

Store several relations in one file using a multitable clustering 

file organization

department

instructor

multitable clustering

of department and

instructor



©Jan-21 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan1.24Database System Concepts - 7th Edition

Multitable Clustering File Organization (cont.)

 good for queries involving department ⨝ instructor, and for queries involving one 

single department and its instructors

 bad for queries involving only department

 results in variable size records

 Can add pointer chains to link records of a particular relation

©Silberschatz, Korth and Sudarshan1.25Database System Concepts - 7th Edition

Partitioning

 Table partitioning: Records in a relation can be partitioned into smaller relations that 

are stored separately

 E.g., transaction relation may be partitioned into 

transaction_2018, transaction_2019, etc.

 Queries written on transaction must access records in all partitions

• Unless query has a selection such as year=2019, in which case only one partition 

in needed

 Partitioning 

• Reduces costs of some operations such as free space management

• Allows different partitions to be stored on different storage devices 

 E.g., transaction partition for current year on SSD, for older years on magnetic 

disk



©Jan-21 Christopher W. Clifton 1320

CS 44800: Introduction To

Relational Database Systems

Storing the Data

Prof. Chris Clifton

23 September 2021

©Silberschatz, Korth and Sudarshan1.27Database System Concepts - 7th Edition

Data Dictionary Storage

The Data dictionary (also called system catalog) stores metadata; that is, data about 
data, such as

 Information about relations

• names of relations

• names, types and lengths of attributes of each relation

• names and definitions of views

• integrity constraints

 User and accounting information, including passwords

 Statistical and descriptive data

• number of tuples in each relation

 Physical file organization information

• How relation is stored (sequential/hash/…)

• Physical location of relation 

 Information about indices (Chapter 14) 



©Jan-21 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan1.28Database System Concepts - 7th Edition

Relational Representation of System Metadata

 Relational representation on disk

 Specialized data structures 

designed for efficient access, in 

memory

©Silberschatz, Korth and Sudarshan1.29Database System Concepts - 7th Edition

Storage Access

 Blocks are units of both storage allocation and data transfer.

 Database system seeks to minimize the number of block transfers between the disk 

and memory.  We can reduce the number of disk accesses by keeping as many blocks 

as possible in main memory.

 Buffer – portion of main memory available to store copies of disk blocks.

 Buffer manager – subsystem responsible for allocating buffer space in main memory.



©Jan-21 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan1.30Database System Concepts - 7th Edition

Buffer Manager

 Programs call on the buffer manager when they need a block from disk.

• If the block is already in the buffer, buffer manager returns the address of the block 

in main memory

• If the block is not in the buffer, the buffer manager

 Allocates space in the buffer for the block

• Replacing (throwing out) some other block, if required, to make space for the 

new block.

• Replaced block written back to disk only if it was modified since the most 

recent time that it was written to/fetched from the disk.

 Reads the block from the disk to the buffer, and returns the address of the block 

in main memory to requester. 

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 31

Buffer Management in a DBMS

 Data must be in RAM for DBMS to operate on it!

 Table of <frame#, pageid> pairs is maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy



©Jan-21 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan1.32Database System Concepts - 7th Edition

Buffer Manager

 Buffer replacement strategy (details coming up!)

 Pinned block: memory block that is not allowed to be written back to disk

• Pin done before reading/writing data from a block

• Unpin done when read /write is complete

• Multiple concurrent pin/unpin operations possible

 Keep a pin count, buffer block can be evicted only if pin count = 0

 Shared and exclusive locks on buffer

• Needed to prevent concurrent operations from reading page contents as they are 
moved/reorganized, and to ensure only one move/reorganize at a time

• Readers get shared lock, updates to a block require exclusive lock

• Locking rules:

 Only one process can get exclusive lock at a time

 Shared lock cannot be concurrently with exclusive lock

 Multiple processes may be given shared lock concurrently

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 33

When a Page is Requested ...

 If requested page is not in pool:

 Choose a frame for replacement

 If  frame is dirty, write it to disk

 Read requested page into chosen frame

 Pin the page and return its address.  

* If requests can be predicted (e.g., sequential scans)

pages can be pre-fetched several pages at a time!



©Jan-21 Christopher W. Clifton 1720

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 34

More on Buffer Management

 Requestor of page must unpin it, and indicate whether page 
has been modified: 

 dirty bit is used for this.

 Page in pool may be requested many times, 

 a pin count is used.  A page is a candidate for replacement iff pin count 
= 0.

 CC & recovery may entail additional I/O when a frame is 
chosen for replacement. (Write-Ahead Log protocol; more later.)

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 35

Buffer Replacement Policy

 Frame is chosen for replacement by a replacement policy:

 Least-recently-used (LRU), Clock, MRU etc.

 Policy can have big impact on # of I/O’s; depends on the 
access pattern.

 Sequential flooding:  Nasty situation caused by LRU + repeated 
sequential scans.

 # buffer frames < # pages in file means each page request causes an 
I/O.  MRU much better in this situation (but not in all situations, of 
course).



©Jan-21 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan1.37Database System Concepts - 7th Edition

Buffer-Replacement Policies

 Most operating systems replace the block least recently used (LRU strategy)

• Idea behind LRU – use past pattern of block references as a predictor of future 

references

• LRU can be bad for some queries

 Queries have well-defined access patterns (such as sequential scans), and a database 

system can use the information in a user’s query to predict future references

 Mixed strategy with hints on replacement strategy provided by the query optimizer is 

preferable

 Example of bad access pattern for LRU: when computing the join of 2 relations r and s 

by a nested loops

for each tuple tr of r do 

for each tuple ts of s do 

if the tuples tr and ts match …

©Silberschatz, Korth and Sudarshan1.38Database System Concepts - 7th Edition

Buffer-Replacement Policies (Cont.)

 Toss-immediate strategy – frees the space occupied by a block as soon as the final tuple 
of that block has been processed

 Most recently used (MRU) strategy – system must pin the block currently being 
processed.  After the final tuple of that block has been processed, the block is unpinned, 
and it becomes the most recently used block.

 Buffer manager can use statistical information regarding the probability that a request will 
reference a particular relation

• E.g., the data dictionary is frequently accessed.  Heuristic:  keep data-dictionary blocks 
in main memory buffer

 Operating system or buffer manager may reorder writes

• Can lead to corruption of data structures on disk

 E.g., linked list of blocks with missing block on disk

 File systems perform consistency check to detect such situations

• Careful ordering of writes can avoid many such problems



©Jan-21 Christopher W. Clifton 1920

Buffer Replacement - Clock

• Keep pages in circular list

– When accessed, set 

“accessed” bit

– When replacing, go around 

list (round-robin)

• If accessed bit 1, set to 0

• If accessed bit 0, this is page 

for replacement.

39

Figure courtesy examradar.com

©Silberschatz, Korth and Sudarshan1.40Database System Concepts - 7th Edition

Optimization of Disk Block Access (Cont.)

 Buffer managers support forced output of blocks for the purpose of 

recovery (more in Chapter 19)

 Nonvolatile write buffers speed up disk writes by writing blocks to a 

non-volatile RAM or flash buffer immediately

• Writes can be reordered to minimize disk arm movement

 Log disk – a disk devoted to writing a sequential log of block updates

• Used exactly like nonvolatile RAM

 Write to log disk is very fast since no seeks are required

 Journaling file systems write data in-order to NV-RAM or log disk

• Reordering without journaling: risk of corruption of file system data



©Jan-21 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan1.41Database System Concepts - 7th Edition

Column-Oriented Storage

 Also known as columnar representation

 Store each attribute of a relation separately

 Example

©Silberschatz, Korth and Sudarshan1.42Database System Concepts - 7th Edition

Columnar Representation

 Benefits:

• Reduced IO if only some attributes are accessed

• Improved CPU cache performance 

• Improved compression

• Vector processing on modern CPU architectures

 Drawbacks

• Cost of tuple reconstruction from columnar representation

• Cost of tuple deletion and update

• Cost of decompression

 Columnar representation found to be more efficient for decision support than row-oriented 
representation

 Traditional row-oriented representation preferable for transaction processing

 Some databases support both representations

• Called hybrid row/column stores



©Jan-21 Christopher W. Clifton 2120

©Silberschatz, Korth and Sudarshan1.43Database System Concepts - 7th Edition

Columnar File Representation

 ORC and Parquet: file formats with 

columnar storage inside file

 Very popular for big-data applications

 Orc file format shown on right:

©Silberschatz, Korth and Sudarshan1.44Database System Concepts - 7th Edition

Storage Organization in Main-Memory Databases

 Can store records directly in memory without 

a buffer manager

 Column-oriented storage can be used in-

memory for decision support applications

• Compression reduces memory 

requirement


