
CS44800 Assignment 1 Solutions
9/15/2021

Note: For some questions you’ll need to see the assignment sheet to understand the question or the

data the answer is based on. Also, in many cases (particularly the SQL queries and relational algebra),

these represent one possible answer, but there may be many equally correct answers.

Question 1

1.1
Output:

Bruce Lee Introduction to Relational Database Systems 9

Tony Stark Algorithm Design, Analysis, and Implementation 8

English description: find each instructor with the name of the course they are teaching and the number

of students enrolled in that course.

Relational Algebra:

𝛱𝑃.𝑁𝑎𝑚𝑒,𝐶.𝑁𝑎𝑚𝑒(𝜌𝑃(𝑃𝑒𝑜𝑝𝑙𝑒) ⋈𝐶.𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝐼𝐷=𝑃.𝐼𝐷

𝜌𝐶(𝐶𝑜𝑢𝑟𝑠𝑒𝑠) ⋈𝐶.𝐶𝑜𝑢𝑟𝑠𝑒𝐼𝐷=𝐸.𝐶𝑜𝑢𝑟𝑠𝑒𝐼𝐷 𝜌𝐸(𝐶𝑜𝑢𝑟𝑠𝑒𝐼𝐷,𝑁𝑢𝑚)(𝛾𝐶𝑜𝑢𝑟𝑠𝑒𝐼𝐷,𝑐𝑜𝑢𝑛𝑡(∗)(𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡)))

1.2
Output:

Bruce Lee 7 USA

Tony Stark 14 USA

SQL Query:

SELECT P.Name, P.ID, P.Nationality from People as P join Courses as C on P.ID=C.InstructorID;

Relational Algebra:

𝛱 𝑃.𝑁𝑎𝑚𝑒,𝑃.𝐼𝐷,𝑃.𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦(𝜌 𝑃(𝑃𝑒𝑜𝑝𝑙𝑒) ⋈ 𝑃.𝐼𝐷=𝐶.𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝐼𝐷𝜌 𝐶(𝐶𝑜𝑢𝑟𝑠𝑒𝑠))

1.3
Output: We accept both

CS448 B

or

CS448 B

CS448 B

due to the inconsistency within the problem writeup.

English Description:

List student’s course and grade who has ID=5.

SQL Query:

SELECT Courses.CourseID, Enrollment.Grade from Courses natural join Enrollment where

Enrollment.Student_id=5;

1.4
Output:

We accept both it is an illegal query due to mismatch on columns of both sides of the natural join or we

accept

CS448 B 7 Introduction to Relational Database Systems

List the course ID, grade, instructorID, and name of the course that the student with ID=5 is taking.

SQL Query:

SELECT * FROM (SELECT CourseID, Grade from Enrollment) natural join Courses;

1.5
Output:

We accept either

CS448 B

CS580 B

or

CS448 B

CS448 B

English Description:

Return the CourseID and Grade of an instance with student ID = 5 after a cross product.

SQL Query:

SELECT CourseID, Grade from Enrollment cross join Courses where Student_id=5;

1.6
Output:

USA 5

China 2

UK 4

Japan 1

France 1

A common mistake people made is they include the instructors in the final result.

SQL Query:

select Nationality, count(distinct Name) from Enrollment join People on

Enrollment.Student_id=People.ID group by Nationality;

Relational Algebra:

𝛾 𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦,𝑐𝑜𝑢𝑛𝑡(𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑆𝑡𝑢𝑑𝑒𝑛𝐼𝐷)(𝑃𝑒𝑜𝑝𝑙𝑒 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒.𝐼𝐷=𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡.𝑆𝑡𝑢𝑑𝑒𝑛𝐼𝐷𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡)

1.7
Output:

1 3

3 3

English Description:

List the groups of CS448 with more than 2 students and the number of students in the group.

Relational Algebra:

𝜎 𝑐𝑜𝑢𝑛𝑡(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝐷)>2(𝛾 𝐺𝑟𝑜𝑢𝑝𝐼𝐷,𝑐𝑜𝑢𝑛𝑡(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝐷)(𝜎 𝐶𝑜𝑢𝑟𝑠𝑒𝐼𝐷="𝐶𝑆448"(𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡)))

1.8
Output:

We accept both answers of the students who are taking the same class with Richard White and students

who are taking the same class in the same section with Richard White.

Jon Snow

James Bond

Winston Churchill

Luke Skywalker

Jackie Chan

Hugo Lafayette

Ben Kenobi

Harry Potter

Son Goku

Wonder Woman

Sun Tzu

Leia Organa

Or

Jame Bond

Winston Churchill

Luke Skywalker

Jackie Chan

Hogu Lafayette

Harry Potter

Sun Tzu

SQL Query:

SELECT distinct Name from (select * from People as P where P.ID in (select Student_id from Enrollment

as E where E.Course_id in (SELECT Course_id from E where Student_id in (select P.ID where

P.Name=”Richard White”)) and E.SectionNum in (select Section_num from E where E.StudentID in

(SELECT distinct P.ID from P where P.Name!=”Richard White”)))) where Name!=”Richard White”;

Relational Algebra:

𝜌 𝐴(𝜎 𝑁𝑎𝑚𝑒="𝑅𝑖𝑐ℎ𝑎𝑟𝑑 𝑊ℎ𝑖𝑡𝑒"(𝑃𝑒𝑜𝑝𝑙𝑒))

𝜚 𝐵(𝐴 ⋈ 𝐴.𝐼𝐷=𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡.𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝐷𝜌 𝐸𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡)

𝜚 𝐶(𝐸 ⋈ 𝐸.𝐶𝑜𝑢𝑟𝑠𝑒𝐼𝐷=𝐵.𝐶𝑜𝑢𝑟𝑠𝑒𝐼𝐷 𝑎𝑛𝑑 𝐸.𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑁𝑢𝑚=𝐵.𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝐵)

𝛱 𝑁𝑎𝑚𝑒(𝜎 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑁𝑎𝑚𝑒 ∧ 𝑁𝑎𝑚𝑒!="𝑅𝑖𝑐ℎ𝑎𝑟𝑑 𝑊ℎ𝑖𝑡𝑒" (𝐶))

For Questions 2 through 6, use the following relations (schema):

Student(sid: integer, sname: string)

Course(cid: string, iid: integer, cname: string)

Instructor(iid: integer, iname: string)

Grades(sid: integer, cid: string, grade: string)

Question 2: Relational Algebra

Write relational algebra for the following queries. If you need to make any particular

assumptions, please list them.

1. Find the name of the students who have registered in the course with

cid CS44800.

2. Find the ids of the courses taught by at least two different instructors.

3. Find the ids of the students who never received a grade F.

4. Give a list of all people (Instructors and Students), with their ID and name.

2.1) If you considered cid from Course table:

∏sname (∏sid (∏cid (σCourse.cid=’cs44800’ (Course))Grades)Student)

If you considered cid from Grades table:

∏Student.sname (σGrades.cid = ”CS44800” (Grades ⨝ Student))

2.2) ∏Course.cid(σCourse.count(iid)>1 (ɣcid,count(iid))(Course))

2.3) ∏Grades.sid (Grades) - ∏ Grades.sid (σ Grades.grade=”F” (Grades))

2.4) ∏ID,Name (ρStudent(ID,Name)(Student) ∪ ρInstructor(ID,Name)(Instructor))

Question 3: Relational Model Attribute Domains

In the above schema, we list data types (domain) for each attribute. Do you need to

know the domain to write the queries in the preceding question? Explain why or why

not.

Yes- Since for 2.4 we need to make a list of people. We need to know the domain

since if instructor id is different domain as compared to student id then we cannot

union the two tables.

Also, it is possible for the cid of Course to be a int and cid of Grades to be string.

Then we would not be able to join the two tables.

Question 4:
1. It is not legal relational algebra because although Course and Grade technically have the same

domains for each of their attributes (int vs. int, and string vs. string), the actual domains are not

compatible between them. They also do not have the same attributes. For example, the

instructor ID may not be factually compatible with the student ID. Moreover, the grade and the

course name, although both are strings, cannot be compatible. One is a letter grade and another

one is a word or phrase.

2. Yes if you only project the cid attribute of the Grades and the Course relations you can do a

union between the two projections. I don’t think it will make sense since you are combining the

course IDs of the courses offered and the course IDs of the course with at least one student

grade. It will just return all the courses as I assume all courses which students have grades in

should appear in the Course relation.

Q5:
1. Student table another key: sid, sname

Course table another key: cid, iid, cname

2. Instructor table: The only other possible candidate key would be iname,

and we know that names are not likely to be unique. Having both together

(iid iname) as the key would not be a candidate key, as a subset (iid) is a

key.

Grades Table: If sid or cid were a key alone, then the two together would

not be a candidate key. Likewise, if grade were a key, it would imply that

every two students can every get the same grade. As to other possibilities:

 Sid, grade: not a candidate key since a single student can have same

grades for separate course

 cid, grade: not a candidate key since multiple students can have

same grades for same course

3. If we didn’t know the keys, it might be possible that iid alone was not a key

for Instructor, in which case iid and iname together could be a candidate

key. Likewise, if we didn’t know that sid and cid formed a key, we could

consider a case where a student could retake a course and get a new grade

– and if we assume the old grade was kept as well, then all three would

form a candidate key. Although this would mean that retaking a course and

getting the same grade wasn’t possible.

Q6:
The given query Course ⋈Course.iid≠Instructor.iid Instructor will not give us courses that

do not have an instructor. In terms of SQL query this can be written as,

SELECT * FROM Course,Instructor Where Course.iid≠Instructor.iid

This basically joins each course in the Course table with the columns in the

Instructor entries with an instructor other than the one teaching the course

(which is basically nonsensical). So, if a course doesn’t have any instructor

(meaning NULL Course.iid field) then that course won’t even be available in the

joined table (since NULL value isn’t true for any comparison). So the

corresponding query will give us all the other courses except the ones we are

looking for. The correct query should be:

SELECT cid FROM Course WHERE iid is NULL

Q7:
In relational database systems, a null represents missing or unknown information

at the column level. A null is not the same as 0 (zero) or blank. Null means no

entry has been made for the column and it implies that the value is either

unknown or inapplicable.

With any relational DBMS that supports nulls you can use them to distinguish

between a deliberate entry of 0 (for numerical columns) or a blank (for character

columns) and an unknown or inapplicable entry (NULL for both numerical and

character columns).

Example of appropriate null usage:

Name Subj A Subj B Subj C
Tom 91 85 97

Nial 90 NULL 91

Louis 93 83 88

Here, in the above table we see some students along with the numbers they

received in 3 different subjects in a semester. The NULL value indicates that the

teacher of that particular subject has yet to update the mark of that particular

student. It doesn’t mean he/she received a 0.

Suppose, here we want to know the average mark in Subj B. In this case, we just

use the aggregate function AVG and we’ll have our intended average = (85+83)/2

= 84. But, here if we used 0 to indicate unknown value the AVG function would

return wrong value (85+0+83)/3 = 56.

Example of null usage where different structure is better:

Name Age Dept_Name Building

Timmy 24 CS 2
Harry 25 Stats 3

Susan 21 NULL NULL

Here, we see a table containing students along with theirs age, department and

the corresponding building. Now, for Susan the corresponding department and

building is unknown. As a result there are 2 NULL entries here taking space in the

database. But if we decompose the table into 2, like below, then we don’t need

this NULL value at all.

Name Age
Timmy 24

Harry 25

Susan 21

Department Building
CS 2

Stats 3

Now, we add a 3rd table containing relation between Student Name and

Department.

Name Department

Timmy CS
Harry Stats

We see that, we don’t need a table with NULL value in the above case because

the corresponding entry for Susan doesn’t even appear in the 3rd table since it is

unknown.

This is an interesting example to think about the semantics of queries involving

null. If we wanted to list all of the students in CS, Susan would not be included (as

expected.) But if we wanted a list of all students NOT in CS, Susan would still not

be included. As an unknown, she might or might not be in CS. Breaking it into

tables and joining makes it a little more obvious that such a query would only get

students who were assigned to a department, and that we’d need something

different to get those who weren’t assigned to a department (think about how

you might do this.)

Q8:
Intersection is not a primitive relational algebra operator, because it is can be

written using only primitive operators. One way to do this is:

