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Introduction

 Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation
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Relational algebra optimization

• Many ways to get the same result

– Equivalent relational algebra expressions

– Different algorithms for processing expressions

• Questions:

– What are equivalent?

– How do we determine what is best?

• Transformation rules

– (preserve equivalence)

– What are good transformations?

Rules: Natural joins & cross products & 

union

• R ⨝ S = S ⨝ R

• (R ⨝ S) ⨝ T = R ⨝ (S ⨝ T) 

• R x S = S x R

• (R x S) x T = R x (S x T)

• R U S = S U R

• R U (S U T) = (R U S) U T
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Note:

• Carry attribute names in results, so order is not important

• Can also write as trees, e.g.:

T R

⨝

R S S T
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Introduction (Cont.)

 An evaluation plan defines exactly what algorithm is used for each 

operation, and how the execution of the operations is coordinated.

 Find out how to view query execution plans on your favorite database
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Viewing Query Evaluation Plans

 Most database support  explain <query>

• Displays plan chosen by query optimizer, along with cost estimates

• Some syntax variations between databases

 Oracle:  explain plan for <query> followed by select * from table 

(dbms_xplan.display)

 SQL Server:  set showplan_text on

 Some databases (e.g. PostgreSQL) support explain analyse <query>

• Shows actual runtime statistics found by running the query, in

addition to showing the plan

 Some databases (e.g. PostgreSQL) show cost as   f..l 

• f is the cost of delivering first tuple and l is cost of delivering all results 
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Optimization:  Transform Query Plan

• Find the “tree” that gives the fastest response

– All must give the same answer

– Fewest IOs

• Rule-based Query Optimization

– Transformations we know will always help

– Independent of data values

• Cost-based Query Optimization

– Estimate cost based on data

Equivalent Query Plans

• Give the same set of tuples on EVERY legal database 
instance

– Looking only at the schema

– In practice, ignore integrity constraints

– Note:  since dealing with SQL, consider multiset semantics

• Equivalence Rule

– Transformation that can be applied to a small set of operations 
as part of the larger tree

– Algebra…
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Rules: Selects

• σp1p2(R) =

• σp1vp2(R) =

σp1 [ σp2 (R)]

[ σp1 (R)] U  [ σp2 (R)]

Let: X = set of attributes

Y = set of attributes

XY = X U Y

pxy (R) = px [py (R)] 

Rules: Project
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Multisets vs. Sets

• R = {a,a,b,b,b,c}

• S = {b,b,c,c,d}

• RUS = ?

• Option 1 SUM

RUS = {a,a,b,b,b,b,b,c,c,c,d}

• Option 2 MAX

RUS = {a,a,b,b,b,c,c,d}

Option 2 (MAX) makes this rule work:

sp1vp2 (R) = sp1(R)  U sp2(R) 

Example: R={a,a,b,b,b,c}

P1 satisfied by a,b;  P2 satisfied by b,c

sp1vp2 (R) = {a,a,b,b,b,c}

sp1(R) = {a,a,b,b,b}

sp2(R) = {b,b,b,c}

sp1(R) U sp2 (R) = {a,a,b,b,b,c}
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“Sum” option makes more sense:

Senators (……) Rep (……)

T1 = pyr,state Senators;   T2 = pyr,state Reps

T1 Yr State T2 Yr State
97 CA 99 CA
99 CA 99 CA
98 AZ 98 CA

Union?

Rules:  σ + ⨝ combined 

• Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R,S attribs

• σp (R ⨝ S) = [σp (R)] ⨝ S

• σq (R ⨝ S) = R ⨝ [σq (S)]  
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Rules: σ + ⨝ combined  (continued) 

Some Rules can be Derived:

• σpq (R ⨝ S) =

• σpqm (R ⨝ S) =

• σpvq (R ⨝ S) =

Derivation for first one

• σpq (R ⨝ S)  =

– σp [σq (R ⨝ S) ] =

– σp [ R ⨝ σq (S) ] =

• [σp (R)] ⨝ [σq (S)]



©Jan-21 Christopher W. Clifton 1020

Rules:   Π, σ combined

• Let

– x = subset of R attributes

– z = attributes in predicate P (subset of R attributes)

Πx[σp (R) ] = {σp [ Πx (R) ]}Πx

Πxz

Let x = subset of R attributes

y = subset of S attributes

z = intersection of R,S attributes

πxy (R ⨝ S) = 

πxy{[πxz (R) ] ⨝ [πyz (S) ]} 

Rules:   π, ⨝ combined
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πxy {σp (R ⨝ S)}  =

πxy {σp [πxz’ (R) ⨝πyz’ (S)]} 

z’ = z U {attributes used in P }

Rules for σ, π combined with X 

• similar...

• e.g., σp (R X S) =  ?
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σp(R U S) = σp(R) U σp(S) 

σp(R - S) = σp(R) - S = σp(R) - σp(S) 

Rules:  σ,U combined:

Which are “good” transformations?

σp1p2 (R)  σp1 [σp2 (R)] 

σp (R ⨝ S)  [σp (R)] ⨝ S

R ⨝ S   S ⨝ R

πx [σp (R)]  πx {σp [πxz (R)]}



©Jan-21 Christopher W. Clifton 1320

Conventional wisdom: do projects early

• Example: R(A,B,C,D,E)    x={E}  

P: (A=3)  (B=“cat”)

• πx {σp (R)}    vs. πE {σp{πABE(R)}}  

What if we have A, B indexes?

B = “cat”                             A=3

Intersect pointers to get

pointers to matching tuples
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Bottom line:

• No transformation is always good

• Usually good: early selections

• More transformations:

– Eliminate common sub-expressions

– Other operations: duplicate elimination


