
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Query Optimization

Prof. Chris Clifton

21 October 2021

©Silberschatz, Korth and Sudarshan16.2Database System Concepts - 7th Edition

Introduction

 Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation

©Jan-21 Christopher W. Clifton 220

Relational algebra optimization

• Many ways to get the same result

– Equivalent relational algebra expressions

– Different algorithms for processing expressions

• Questions:

– What are equivalent?

– How do we determine what is best?

• Transformation rules

– (preserve equivalence)

– What are good transformations?

Rules: Natural joins & cross products &

union

• R ⨝ S = S ⨝ R

• (R ⨝ S) ⨝ T = R ⨝ (S ⨝ T)

• R x S = S x R

• (R x S) x T = R x (S x T)

• R U S = S U R

• R U (S U T) = (R U S) U T

©Jan-21 Christopher W. Clifton 320

Note:

• Carry attribute names in results, so order is not important

• Can also write as trees, e.g.:

T R

⨝

R S S T

©Silberschatz, Korth and Sudarshan16.7Database System Concepts - 7th Edition

Introduction

 Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation

©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan16.8Database System Concepts - 7th Edition

Introduction (Cont.)

 An evaluation plan defines exactly what algorithm is used for each

operation, and how the execution of the operations is coordinated.

 Find out how to view query execution plans on your favorite database

©Silberschatz, Korth and Sudarshan16.9Database System Concepts - 7th Edition

Viewing Query Evaluation Plans

 Most database support explain <query>

• Displays plan chosen by query optimizer, along with cost estimates

• Some syntax variations between databases

 Oracle: explain plan for <query> followed by select * from table

(dbms_xplan.display)

 SQL Server: set showplan_text on

 Some databases (e.g. PostgreSQL) support explain analyse <query>

• Shows actual runtime statistics found by running the query, in

addition to showing the plan

 Some databases (e.g. PostgreSQL) show cost as f..l

• f is the cost of delivering first tuple and l is cost of delivering all results

©Jan-21 Christopher W. Clifton 520

Optimization: Transform Query Plan

• Find the “tree” that gives the fastest response

– All must give the same answer

– Fewest IOs

• Rule-based Query Optimization

– Transformations we know will always help

– Independent of data values

• Cost-based Query Optimization

– Estimate cost based on data

Equivalent Query Plans

• Give the same set of tuples on EVERY legal database
instance

– Looking only at the schema

– In practice, ignore integrity constraints

– Note: since dealing with SQL, consider multiset semantics

• Equivalence Rule

– Transformation that can be applied to a small set of operations
as part of the larger tree

– Algebra…

©Jan-21 Christopher W. Clifton 620

Rules: Selects

• σp1p2(R) =

• σp1vp2(R) =

σp1 [σp2 (R)]

[σp1 (R)] U [σp2 (R)]

Let: X = set of attributes

Y = set of attributes

XY = X U Y

pxy (R) = px [py (R)]

Rules: Project

©Jan-21 Christopher W. Clifton 720

Multisets vs. Sets

• R = {a,a,b,b,b,c}

• S = {b,b,c,c,d}

• RUS = ?

• Option 1 SUM

RUS = {a,a,b,b,b,b,b,c,c,c,d}

• Option 2 MAX

RUS = {a,a,b,b,b,c,c,d}

Option 2 (MAX) makes this rule work:

sp1vp2 (R) = sp1(R) U sp2(R)

Example: R={a,a,b,b,b,c}

P1 satisfied by a,b; P2 satisfied by b,c

sp1vp2 (R) = {a,a,b,b,b,c}

sp1(R) = {a,a,b,b,b}

sp2(R) = {b,b,b,c}

sp1(R) U sp2 (R) = {a,a,b,b,b,c}

©Jan-21 Christopher W. Clifton 820

“Sum” option makes more sense:

Senators (……) Rep (……)

T1 = pyr,state Senators; T2 = pyr,state Reps

T1 Yr State T2 Yr State
97 CA 99 CA
99 CA 99 CA
98 AZ 98 CA

Union?

Rules: σ + ⨝ combined

• Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R,S attribs

• σp (R ⨝ S) = [σp (R)] ⨝ S

• σq (R ⨝ S) = R ⨝ [σq (S)]

©Jan-21 Christopher W. Clifton 920

Rules: σ + ⨝ combined (continued)

Some Rules can be Derived:

• σpq (R ⨝ S) =

• σpqm (R ⨝ S) =

• σpvq (R ⨝ S) =

Derivation for first one

• σpq (R ⨝ S) =

– σp [σq (R ⨝ S)] =

– σp [R ⨝ σq (S)] =

• [σp (R)] ⨝ [σq (S)]

©Jan-21 Christopher W. Clifton 1020

Rules: Π, σ combined

• Let

– x = subset of R attributes

– z = attributes in predicate P (subset of R attributes)

Πx[σp (R)] = {σp [Πx (R)]}Πx

Πxz

Let x = subset of R attributes

y = subset of S attributes

z = intersection of R,S attributes

πxy (R ⨝ S) =

πxy{[πxz (R)] ⨝ [πyz (S)]}

Rules: π, ⨝ combined

©Jan-21 Christopher W. Clifton 1120

πxy {σp (R ⨝ S)} =

πxy {σp [πxz’ (R) ⨝πyz’ (S)]}

z’ = z U {attributes used in P }

Rules for σ, π combined with X

• similar...

• e.g., σp (R X S) = ?

©Jan-21 Christopher W. Clifton 1220

σp(R U S) = σp(R) U σp(S)

σp(R - S) = σp(R) - S = σp(R) - σp(S)

Rules: σ,U combined:

Which are “good” transformations?

σp1p2 (R)  σp1 [σp2 (R)]

σp (R ⨝ S)  [σp (R)] ⨝ S

R ⨝ S  S ⨝ R

πx [σp (R)]  πx {σp [πxz (R)]}

©Jan-21 Christopher W. Clifton 1320

Conventional wisdom: do projects early

• Example: R(A,B,C,D,E) x={E}

P: (A=3)  (B=“cat”)

• πx {σp (R)} vs. πE {σp{πABE(R)}}

What if we have A, B indexes?

B = “cat” A=3

Intersect pointers to get

pointers to matching tuples

©Jan-21 Christopher W. Clifton 1420

Bottom line:

• No transformation is always good

• Usually good: early selections

• More transformations:

– Eliminate common sub-expressions

– Other operations: duplicate elimination

