Introduction

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation

(a) Initial expression tree
(b) Transformed expression tree
Relational algebra optimization

- Many ways to get the same result
 - Equivalent relational algebra expressions
 - Different algorithms for processing expressions
- Questions:
 - What are equivalent?
 - How do we determine what is best?
- Transformation rules
 - (preserve equivalence)
 - What are good transformations?

Rules: Natural joins & cross products & union

- $R \bowtie S = S \bowtie R$
- $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$
- $R \times S = S \times R$
- $(R \times S) \times T = R \times (S \times T)$
- $R \cup S = S \cup R$
- $R \cup (S \cup T) = (R \cup S) \cup T$
Note:

- Carry attribute names in results, so order is not important
- Can also write as trees, e.g.:

```
T ≡ R

R S
```

Introduction

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation

```
II_{name, title} \sigma_{dept_name = \text{Music}}

(a) Initial expression tree
```

```
II_{name, title} \sigma_{dept_name = \text{Music}}

(b) Transformed expression tree
```
Introduction (Cont.)

- An **evaluation plan** defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

- Find out how to view query execution plans on your favorite database

Viewing Query Evaluation Plans

- Most database support **explain** <query>
 - Displays plan chosen by query optimizer, along with cost estimates
 - Some syntax variations between databases
 - Oracle: **explain plan for** <query> followed by **select** * from table (dbms_xplan.display)
 - SQL Server: **set showplan_text on**
- Some databases (e.g. PostgreSQL) support **explain analyse** <query>
 - Shows actual runtime statistics found by running the query, in addition to showing the plan
- Some databases (e.g. PostgreSQL) show cost as **f..l**
 - **f** is the cost of delivering first tuple and **l** is cost of delivering all results
Optimization: Transform Query Plan

• Find the “tree” that gives the fastest response
 – All must give the same answer
 – Fewest IOs
• Rule-based Query Optimization
 – Transformations we know will always help
 – Independent of data values
• Cost-based Query Optimization
 – Estimate cost based on data

Equivalent Query Plans

• Give the same set of tuples on EVERY legal database instance
 – Looking only at the schema
 – In practice, ignore integrity constraints
 – Note: since dealing with SQL, consider multiset semantics
• Equivalence Rule
 – Transformation that can be applied to a small set of operations as part of the larger tree
 – Algebra…
Rules: Selects

- $\sigma_{p_1 \land p_2}(R) = \sigma_{p_1} [\sigma_{p_2}(R)]$
- $\sigma_{p_1 \lor p_2}(R) = [\sigma_{p_1}(R)] \cup [\sigma_{p_2}(R)]$

Let: $X =$ set of attributes
$Y =$ set of attributes

$XY = X \cup Y$

$\pi_{xy}(R) = \pi_x[\pi_y(R)]$
Multisets vs. Sets

- \(R = \{a,a,b,b,b,c\} \)
- \(S = \{b,b,c,c,d\} \)
- \(RUS = ? \)
 - **Option 1** SUM
 \[RUS = \{a,a,b,b,b,b,b,c,c,c,d\} \]
 - **Option 2** MAX
 \[RUS = \{a,a,b,b,b,c,c,d\} \]

Option 2 (MAX) makes this rule work:

\[\sigma_{p1 \lor p2} (R) = \sigma_{p1} (R) \cup \sigma_{p2} (R) \]

Example: \(R = \{a,a,b,b,b,c\} \)

- \(P1 \) satisfied by \(a,b \); \(P2 \) satisfied by \(b,c \)
- \(\sigma_{p1 \lor p2} (R) = \{a,a,b,b,b,c\} \)
- \(\sigma_{p1} (R) = \{a,a,b,b,b\} \)
- \(\sigma_{p2} (R) = \{b,b,b,c\} \)
- \(\sigma_{p1} (R) \cup \sigma_{p2} (R) = \{a,a,b,b,b,c\} \)
“Sum” option makes more sense:

<table>
<thead>
<tr>
<th></th>
<th>Yr</th>
<th>State</th>
<th></th>
<th>Yr</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td>T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>CA</td>
<td></td>
<td>99</td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>CA</td>
<td></td>
<td>99</td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>AZ</td>
<td></td>
<td>98</td>
<td>CA</td>
<td></td>
</tr>
</tbody>
</table>

Union?

Rules: $\sigma + \Join$ combined

- Let p = predicate with only R attrs
 q = predicate with only S attrs
 m = predicate with only R,S attrs

- $\sigma_p (R \Join S) = [\sigma_p (R)] \Join S$
- $\sigma_q (R \Join S) = R \Join [\sigma_q (S)]$
Some Rules can be Derived:

- \(\sigma_{p \land q} (R \bowtie S) = \)
- \(\sigma_{p \land q \land m} (R \bowtie S) = \)
- \(\sigma_{p \lor q} (R \bowtie S) = \)

Derivation for first one

- \(\sigma_{p \land q} (R \bowtie S) = \)
 - \(- \sigma_{p} [\sigma_{q} (R \bowtie S)] = \)
 - \(- \sigma_{p} [R \bowtie \sigma_{q} (S)] = \)
- \([\sigma_{p} (R)] \bowtie [\sigma_{q} (S)] \)
Rules: Π, σ combined

- Let
 - x = subset of R attributes
 - z = attributes in predicate P (subset of R attributes)

\[
\Pi_x[\sigma_p (R)] = \Pi_x\{\sigma_p [\Pi_x (R)]\}
\]

Rules: Π, \bowtie combined

Let
- x = subset of R attributes
- y = subset of S attributes
- z = intersection of R,S attributes

\[
\Pi_{xy} (R \bowtie S) = \Pi_{xy}\{\Pi_{xz} (R) \bowtie \Pi_{yz} (S)\}
\]
\[\Pi_{xy} \{ \sigma_p (R \bowtie S) \} = \]
\[\Pi_{xy} \{ \sigma_p [\Pi_{xz'} (R) \bowtie \Pi_{yz'} (S)] \} \]
\[z' = z \cup \{ \text{attributes used in } P \} \]

Rules for \(\sigma, \pi \) combined with \(X \)

- similar...
- e.g., \(\sigma_p (R \times S) = \) ?
Rules: σ, U combined:

$\sigma_p(R \cup S) = \sigma_p(R) \cup \sigma_p(S)$

$\sigma_p(R - S) = \sigma_p(R) - S = \sigma_p(R) - \sigma_p(S)$

Which are “good” transformations?

$\sigma_{p1 \land p2}(R) \rightarrow \sigma_{p1} [\sigma_{p2}(R)]$

$\sigma_p(R \bowtie S) \rightarrow [\sigma_p(R)] \bowtie S$

$R \bowtie S \rightarrow S \bowtie R$

$\Pi_x [\sigma_p(R)] \rightarrow \Pi_x \{\sigma_p[\Pi_{xz}(R)]\}$
Conventional wisdom: do projects early

• Example: $R(A,B,C,D,E)$ $x=\{E\}$
 $P: (A=3) \land (B=\text{"cat"})$

• $\pi_x \{\sigma_p (R)\}$ vs. $\pi_E \{\sigma_p \{\pi_{ABE}(R)\}\}$

What if we have A, B indexes?

B = “cat”

A=3

Intersect pointers to get pointers to matching tuples
Bottom line:

• No transformation is always good
• Usually good: early selections
• More transformations:
 – Eliminate common sub-expressions
 – Other operations: duplicate elimination