
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Query Optimization

Prof. Chris Clifton

21 October 2021

©Silberschatz, Korth and Sudarshan16.2Database System Concepts - 7th Edition

Introduction

 Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation

©Jan-21 Christopher W. Clifton 220

Relational algebra optimization

• Many ways to get the same result

– Equivalent relational algebra expressions

– Different algorithms for processing expressions

• Questions:

– What are equivalent?

– How do we determine what is best?

• Transformation rules

– (preserve equivalence)

– What are good transformations?

Rules: Natural joins & cross products &

union

• R ⨝ S = S ⨝ R

• (R ⨝ S) ⨝ T = R ⨝ (S ⨝ T)

• R x S = S x R

• (R x S) x T = R x (S x T)

• R U S = S U R

• R U (S U T) = (R U S) U T

©Jan-21 Christopher W. Clifton 320

Note:

• Carry attribute names in results, so order is not important

• Can also write as trees, e.g.:

T R

⨝

R S S T

©Silberschatz, Korth and Sudarshan16.7Database System Concepts - 7th Edition

Introduction

 Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation

©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan16.8Database System Concepts - 7th Edition

Introduction (Cont.)

 An evaluation plan defines exactly what algorithm is used for each

operation, and how the execution of the operations is coordinated.

 Find out how to view query execution plans on your favorite database

©Silberschatz, Korth and Sudarshan16.9Database System Concepts - 7th Edition

Viewing Query Evaluation Plans

 Most database support explain <query>

• Displays plan chosen by query optimizer, along with cost estimates

• Some syntax variations between databases

 Oracle: explain plan for <query> followed by select * from table

(dbms_xplan.display)

 SQL Server: set showplan_text on

 Some databases (e.g. PostgreSQL) support explain analyse <query>

• Shows actual runtime statistics found by running the query, in

addition to showing the plan

 Some databases (e.g. PostgreSQL) show cost as f..l

• f is the cost of delivering first tuple and l is cost of delivering all results

©Jan-21 Christopher W. Clifton 520

Optimization: Transform Query Plan

• Find the “tree” that gives the fastest response

– All must give the same answer

– Fewest IOs

• Rule-based Query Optimization

– Transformations we know will always help

– Independent of data values

• Cost-based Query Optimization

– Estimate cost based on data

Equivalent Query Plans

• Give the same set of tuples on EVERY legal database
instance

– Looking only at the schema

– In practice, ignore integrity constraints

– Note: since dealing with SQL, consider multiset semantics

• Equivalence Rule

– Transformation that can be applied to a small set of operations
as part of the larger tree

– Algebra…

©Jan-21 Christopher W. Clifton 620

Rules: Selects

• σp1p2(R) =

• σp1vp2(R) =

σp1 [σp2 (R)]

[σp1 (R)] U [σp2 (R)]

Let: X = set of attributes

Y = set of attributes

XY = X U Y

pxy (R) = px [py (R)]

Rules: Project

©Jan-21 Christopher W. Clifton 720

Multisets vs. Sets

• R = {a,a,b,b,b,c}

• S = {b,b,c,c,d}

• RUS = ?

• Option 1 SUM

RUS = {a,a,b,b,b,b,b,c,c,c,d}

• Option 2 MAX

RUS = {a,a,b,b,b,c,c,d}

Option 2 (MAX) makes this rule work:

sp1vp2 (R) = sp1(R) U sp2(R)

Example: R={a,a,b,b,b,c}

P1 satisfied by a,b; P2 satisfied by b,c

sp1vp2 (R) = {a,a,b,b,b,c}

sp1(R) = {a,a,b,b,b}

sp2(R) = {b,b,b,c}

sp1(R) U sp2 (R) = {a,a,b,b,b,c}

©Jan-21 Christopher W. Clifton 820

“Sum” option makes more sense:

Senators (……) Rep (……)

T1 = pyr,state Senators; T2 = pyr,state Reps

T1 Yr State T2 Yr State
97 CA 99 CA
99 CA 99 CA
98 AZ 98 CA

Union?

Rules: σ + ⨝ combined

• Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R,S attribs

• σp (R ⨝ S) = [σp (R)] ⨝ S

• σq (R ⨝ S) = R ⨝ [σq (S)]

©Jan-21 Christopher W. Clifton 920

Rules: σ + ⨝ combined (continued)

Some Rules can be Derived:

• σpq (R ⨝ S) =

• σpqm (R ⨝ S) =

• σpvq (R ⨝ S) =

Derivation for first one

• σpq (R ⨝ S) =

– σp [σq (R ⨝ S)] =

– σp [R ⨝ σq (S)] =

• [σp (R)] ⨝ [σq (S)]

©Jan-21 Christopher W. Clifton 1020

Rules: Π, σ combined

• Let

– x = subset of R attributes

– z = attributes in predicate P (subset of R attributes)

Πx[σp (R)] = {σp [Πx (R)]}Πx

Πxz

Let x = subset of R attributes

y = subset of S attributes

z = intersection of R,S attributes

πxy (R ⨝ S) =

πxy{[πxz (R)] ⨝ [πyz (S)]}

Rules: π, ⨝ combined

©Jan-21 Christopher W. Clifton 1120

πxy {σp (R ⨝ S)} =

πxy {σp [πxz’ (R) ⨝πyz’ (S)]}

z’ = z U {attributes used in P }

Rules for σ, π combined with X

• similar...

• e.g., σp (R X S) = ?

©Jan-21 Christopher W. Clifton 1220

σp(R U S) = σp(R) U σp(S)

σp(R - S) = σp(R) - S = σp(R) - σp(S)

Rules: σ,U combined:

Which are “good” transformations?

σp1p2 (R) σp1 [σp2 (R)]

σp (R ⨝ S) [σp (R)] ⨝ S

R ⨝ S S ⨝ R

πx [σp (R)] πx {σp [πxz (R)]}

©Jan-21 Christopher W. Clifton 1320

Conventional wisdom: do projects early

• Example: R(A,B,C,D,E) x={E}

P: (A=3) (B=“cat”)

• πx {σp (R)} vs. πE {σp{πABE(R)}}

What if we have A, B indexes?

B = “cat” A=3

Intersect pointers to get

pointers to matching tuples

©Jan-21 Christopher W. Clifton 1420

Bottom line:

• No transformation is always good

• Usually good: early selections

• More transformations:

– Eliminate common sub-expressions

– Other operations: duplicate elimination

