

The Relational Data Model

- Based on a single data structure the relation
- A relation can be seen as a table
 - rows, called tuples
 - columns containing values of specific types, such as integer numbers or strings

PURPUE VIVE RSITY.	re	Tables representation of relationships		
		Course-Name	Instructor	Room-Name
	Courses	Databases	Smith	DS1
		Operating Syst.	Jones	N3
		Networks	Li	N3
		Security	Li	G
	Rooms	Room-Name	Building	Floor
		DS1	Recitation	1
		N3	Recitation	1
		G	Univ. Hall	2

Department of Computer Science

DBMS: languages

- Data Definition Language (DDL). It allows one to define:
 - The logical schema of the DB
 - The semantic integrity constraints
 - The authorizations for data accesses
- Data Manipulation Language (DML)
 - Used for data retrieval (query language) and for data updates
- Storage Definition Language (SDL)
 - Used to define physical access structures

A	Relation Schema and Instance	
•	A_1, A_2, \ldots, A_n are attributes	
•	$R = (A_1, A_2,, A_n)$ is a relation schema	
	Example:	
	instructor = (ID, name, dept_name, salary)	
•	A relation instance r defined over schema R is denoted by $r(R)$.	
•	The current values a relation are specified by a table	
•	An element <i>t</i> of relation <i>r</i> is called a <i>tuple</i> and is represented by a <i>row</i> in a table	
Database System Co	ncepts - 7 th Edition 2.20	©Silberschatz, Korth and Sudarshan

Attributes

- The set of allowed values for each attribute is called the **domain** of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value *null* is a member of every domain. Indicated that the value is "unknown"
- The null value causes complications in the definition of many operations

Database S	ystem Con	cepts - 7th	Edition

2.22

©Silberschatz, Korth and Sudarshan

Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: instructor relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000

Database System Concepts - 7th Edition

Database Schema

- Database schema -- is the logical structure of the database.
- Database instance -- is a snapshot of the data in the database at a given instant in time.
- Example:
 - schema: instructor (ID, name, dept_name, salary)
 - Instance:

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Database System Concepts - 7th Edition

Keys

- Let K ⊆ R
- K is a **superkey** of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {*ID*} and {ID,name} are both superkeys of *instructor*.
- Superkey K is a candidate key if K is minimal Example: {*ID*} is a candidate key for *Instructor*
- One of the candidate keys is selected to be the **primary key**.
 - Which one?
- Foreign key constraint: Value in one relation must appear in another
 - Referencing relation
 - Referenced relation
 - Example: dept_name in instructor is a foreign key from instructor referencing department

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Department of Computer Science

Relational Database Design

- There is a solid theory behind a good database design - Based on the concept of *keys* and *functional dependencies*
- **Key**: a given attribute value is unique in the relation - E.g., In the courses/rooms/times, each room/time only appears once
- Functional Dependency: An attribute value in one relation MUST have a corresponding value in another relation

A good relational database design makes it easy to ensure keys and dependencies hold

More on this later