

Department of Computer Science

CS 44800: Introduction To Relational Database Systems

Prof. Chris Clifton 31 August 2021 *Relational Algebra*

Database System Concepts - 7th Edition

ndiana

Center for

Database

Systems

	Select Operation	
 The select Notation: <i>a</i> <i>p</i> is called ti Example: sidepartment Query Result 	operation selects tuples that satisfy a given predicate. $_{p}(r)$ le selection predicate elect those tuples of the <i>instructor</i> relation where the instru- $\sigma_{dept_name="Physics"}(instructor)$ <u>ID name dept_name salary</u> <u>22222 Einstein Physics 95000</u>	ictor is in the "Physics"
Database System Concepts - 7th Edition	3.5	©Silberschatz, Korth and Sudarshan

A	Select Operation (Cont.)	
	We allow comparisons using =, ≠, >, ≥. <. ≤ in the selection predicate. We can combine several predicates into a larger predicate by using the connectives: ∧ (and), ∨ (or), ¬ (not) Functional the instructors in Physics with a colory grapter \$200,000, we write:	
	Example: Find the instructors in Physics with a salary greater \$90,000, we write: $\sigma_{dept_name="Physics"^{alary > 90,000}}$ (instructor) The select predicate may include comparisons between two attributes.	
	 Example, find all departments whose name is the same as their building name: σ_{dept_name=building} (department) 	
Database System Co	ncepts - 7 th Edition 3.6	©Silberschatz, Korth and Sudarshan

A	Project Operation								
•	A unary operation that returns its argument relation, with certain attributes left out.								
•	Notation:								
	$\prod_{A_{1},A_{2},A_{3},\ldots,A_{k}}(r)$								
	where A_1, A_2, \dots, A_k are attribute names and r is a relation name.								
	The result is defined as the relation of k columns obtained by erasing the columns that are not listed								
	 Duplicate rows removed from result, since relations are sets 								
Database System Co	oncepts - 7 th Edition 3.7 ©Silberschatz, Korth and Sudarshan								

A	Composition of Relational Operations	
•	 The result of a relational-algebra operation is relation and therefore of relational-algebra operations can be composed together into a relational-algebra expression. 	3
	 Consider the query Find the names of all instructors in the Physics department. 	
	$\prod_{name}(\sigma_{dept_name = "Physics"} (instructor))$	
•	 Instead of giving the name of a relation as the argument of the projection operation, we give an expression that evaluates to a relation. 	
•	 Select name from instructor where dept_name = 'Physics'; 	
Database System Co	em Concepts - 7 th Edition 3.9 ©Silberschatz, Korth ar	nd Sudarshan

1										
	Th	o in	etru	cto	r v	to		hae	ta	blo
			รแน			100		163	La	IDIE
	instructor.ID	name	dept_name	salarv	teaches.ID	course_id	sec_id	semester	vear	
	10101	Sriniyasan	Comp Sci	65000	10101	CS 101	1	Fall	2017	
	10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2017	
	10101	Srinivasan	Comp. Sci	65000	10101	CS-347	i	Fall	2017	
	10101	Srinivasan	Comp. Sci.	65000	12121	FIN-201	i	Spring	2018	
	10101	Srinivasan	Comp. Sci.	65000	15151	MU-199	i	Spring	2018	
	10101	Srinivasan	Comp. Sci.	65000	22222	PHY-101	1	Fall	2017	
			'							
	12121	Wu	Finance	90000	10101	CS-101	1	Fall	2017	
	12121	Wu	Finance	90000	10101	CS-315	1	Spring	2018	
	12121	Wu	Finance	90000	10101	CS-347	1	Fall	2017	
	12121	Wu	Finance	90000	12121	FIN-201	1	Spring	2018	
	12121	Wu	Finance	90000	15151	MU-199	1	Spring	2018	
	12121	Wu	Finance	90000	22222	PHY-101	1	Fall	2017	
	15151	Mozart	Music	40000	10101	CS-101		Fall	2017	
	15151	Mozart	Music	40000	10101	CS-315		Spring	2018	
	15151	Mozart	Music	40000	10101	CS-34/		Fall	2017	
	15151	Mozart	Music	40000	12121	F1IN-201		Spring	2018	
	15151	Mozart	Music	40000	15151	MU-199		Spring	2018	
	15151	Mozart	MUSIC	40000	22222	PH Y-101		Faii	2017	
									···	
	22222	Finstein	Physics	95000	10101	CS-101	1	 Fall	2017	
	22222	Einstein	Physics	95000	10101	CS-315	1	Spring	2018	
	22222	Einstein	Physics	95000	10101	CS-347	1	Fall	2017	
	22222	Einstein	Physics	95000	12121	EIN-201	1	Spring	2018	
	22222	Finstein	Physics	95000	15151	MI-199	1	Spring	2018	
	22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2017	
		1							·	
Database System Concepts - 7th Edition					3.11					©Silberschatz, Korth and Sudarshan

Join Operation

The Cartesian-Product

instructor X teaches

associates every tuple of instructor with every tuple of teaches.

- Most of the resulting rows have information about instructors who did NOT teach a particular course.
- To get only those tuples of "*instructor* X *teaches*" that pertain to instructors and the courses that they taught, we write:

 $\sigma_{\textit{instructor.id} = \textit{teaches.id}}$ (instructor x teaches))

- We get only those tuples of "*instructor* X *teaches*" that pertain to instructors and the courses that they taught.
- The result of this expression, shown in the next slide

Database System Concepts - 7 th Editio

Join Operation (Cont.)

• The table corresponding to:

Select * from instructor,teaches where instructor.id=teaches.id

$\sigma_{\mathit{instructo}}$	r.id = teaches.i	d (instructor	x teaches))
-------------------------------	------------------	---------------	-------------

instru	uctor.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10	0101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2017
10	0101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2018
10	0101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2017
12	2121	Wu	Finance	90000	12121	FIN-201	1	Spring	2018
15	5151	Mozart	Music	40000	15151	MU-199	1	Spring	2018
22	2222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2017
32	2343	El Said	History	60000	32343	HIS-351	1	Spring	2018
45	5565	Katz	Comp. Sci.	75000	45565	CS-101	1	Spring	2018
45	5565	Katz	Comp. Sci.	75000	45565	CS-319	1	Spring	2018
76	6766	Crick	Biology	72000	76766	BIO-101	1	Summer	2017
76	6766	Crick	Biology	72000	76766	BIO-301	1	Summer	2018
83	3821	Brandt	Comp. Sci.	92000	83821	CS-190	1	Spring	2017
83	3821	Brandt	Comp. Sci.	92000	83821	CS-190	2	Spring	2017
1 01	2021	n14	Q Q.!	01000	01011	00.210		o	2010
oncepts - 7th Edition				3	.13				©Si

Join Operation (Cont.)

- The **join** operation allows us to combine a select operation and a Cartesian-Product operation into a single operation.
- Consider relations *r*(*R*) and *s*(*S*)
- Let "theta" be a predicate on attributes in the schema R "union" S. The join operation $r \bowtie_{\theta} s$ is defined as follows:

 $r \bowtie_{\theta} s = \sigma_{\theta} (r \times s)$

Thus

 $\sigma_{instructor.id = teaches.id}$ (instructor x teaches))

Can equivalently be written as

instructor ⋈ *Instructor.id* = *teaches.id teaches*.

Database System Concepts - 7th Edition

A	Union Operation
•	The union operation allows us to combine two relations
•	Notation: $r \cup s$
•	For $r \cup s$ to be valid.
	 <i>r</i>, <i>s</i> must have the <i>same</i> arity (same number of attributes) The attribute domains must be compatible (example: 2nd column of <i>r</i> deals with the same type of values as does the 2nd column of <i>s</i>)
•	Example: to find all courses taught in the Fall 2017 semester, or in the Spring 2018 semester, or in
	both
	$\prod_{\textit{course_id}} (\sigma_{\textit{semester="Fall" A year=2017}}(\textit{section})) ~ \cup$
	$\prod_{course_id} (\sigma_{semester="Spring" \land year=2018} (section))$
Database System Co	oncepts - 7 th Edition 3.15 ©Silberschatz, Korth and Sudarshan

A	Unior	o Operation (Cont.)	
•	Result of:		
	$\prod_{\textit{course_id}} (\sigma_{\textit{semester="Fall" } \land \textit{year=2017}} (\textit{section})$	on)) U	
	$\prod_{\mathit{course_id}} (\sigma_{\mathit{semester="Spring"} \land \mathit{year=2018}}(\mathit{sec})$	ction))	
		course_id CS-101 CS-315 CS-319 CS-347 FIN-201 HIS-351 MU-199 PHY-101	
Database System Co	ncents - 7 th Edition	3.16	©Silberschatz, Korth and Sudarshan

A	Set-Intersection Operation
	The set-intersection operation allows us to find tuples that are in both the input relations. Notation: $r \cap s$ Assume: • r , s have the same arity • attributes of r and s are compatible Example: Find the set of all courses taught in both the Fall 2017 and the Spring 2018 semesters. $\prod_{course_id} (\sigma_{semester="Fall" \land year=2017(section))) \cap \prod_{course_id} (\sigma_{semester="Spring" \land year=2018(section)))}$ • Result $\boxed{course_id}_{CS-101}$
Database System Co	oncepts - 7 th Edition 3.17 ©Silberschatz, Korth and Sudarshan

1	
	Viere .
ANAL	

The Assignment Operation

- It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary relation variables.
- The assignment operation is denoted by ← and works like assignment in a programming language.
- Example: Find all instructor in the "Physics" and Music department.

 $\begin{array}{l} \textit{Physics} \leftarrow \sigma_{\textit{dept_name="Physics"}}(\textit{instructor}) \\ \textit{Music} \leftarrow \sigma_{\textit{dept_name="Music"}}(\textit{instructor}) \\ \textit{Physics} \cup \textit{Music} \end{array}$

With the assignment operation, a query can be written as a sequential program consisting of a series of assignments followed by an expression whose value is displayed as the result of the query.

Database System Concepts - 7th Edition

3.19

A	Equivalent Queries		
•	There is more than one way to write a query in relational algebra.		
•	Example: Find information about courses taught by instructors in the Physics department with salary greater than 90,000		
•	Query 1		
	$\sigma_{depl_name="Physics"^{salary} > 90,000}$ (instructor)		
•	Query 2		
	$\sigma_{dept_name="Physics"}(\sigma_{salary > 90.000} (instructor))$		
•	The two queries are not identical; they are, however, equivalent they give the same result on any database.		
Database System Co	ncepts - 7 th Edition 3.22 ©Silberschatz, Korth and Sudarshan		

Department of Computer Science

CS 44800: Introduction To Relational Database Systems

Prof. Chris Clifton 31 August 2021 Aggregation

ndiana

Center for

Database

Systems

Aggregation (Cont.)
 Attributes in select clause outside of aggregate functions must appear in group by list
 Attributes in select clause outside of aggregate functions must appear in group by list /* erroneous query */ select dept_name, ID, avg (salary) from instructor group by dept_name;

3.29

Database System Concepts - 7th Edition

SQL History

- IBM Sequel language developed as part of System R project at the IBM San Jose Research Laboratory
- Renamed Structured Query Language (SQL)
- ANSI and ISO standard SQL:
 - SQL-86
 - SQL-89
 - SQL-92
 - SQL:1999 (language name became Y2K compliant!)
 - SQL:2003
- Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from later standards and special proprietary features.
 - Not all examples here may work on your particular system.

Database System	Concepts - 7th	Edition

3.37

A	SQL Parts	
•	DML provides the ability to query information from the database and to insert tuples into, delete tuples from, and modify tuples in the database.	
•	integrity – the DDL includes commands for specifying integrity constraints.	
•	View definition The DDL includes commands for defining views.	
•	Transaction control –includes commands for specifying the beginning and ending of transactions.	
•	Embedded SQL and dynamic SQL define how SQL statements can be embedded within general- purpose programming languages.	
•	Authorization – includes commands for specifying access rights to relations and views.	
Database System Co	ncepts - 7 th Edition 3.38 ©Silberschatz, Korth and Sudarshan	

The Rename Operation (SQL)

- The SQL allows renaming relations and attributes using the as clause: old-name as new-name
 Find the names of all instructors who have a higher salary than
 - some instructor in 'Comp. Sci'.
 select distinct *T.name* from instructor as *T, instructor* as *S* where *T.salary* > S.salary and S.dept_name = 'Comp. Sci.'
- Keyword as is optional and may be omitted instructor as T ≡ instructor T

Database System Concepts - 7th Edition

3.39

String Operations

- SQL includes a string-matching operator for comparisons on character strings. The operator like uses patterns that are described using two special characters:
 - percent (%). The % character matches any substring.
 - underscore (_). The _ character matches any character.
- Find the names of all instructors whose name includes the substring "dar".

select name from instructor where name like '%dar%'

Match the string "100%"

like '100 \%' escape '\'

in that above we use backslash (\) as the escape character.

Database System Concepts - 7th Edition

3.41

Subqueries in the From Clause

- SQL allows a subquery expression to be used in the from clause
- Find the average instructors' salaries of those departments where the average salary is greater than \$42,000."

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary
 from instructor
 group by dept_name)
where avg_salary > 42000;

- Note that we do not need to use the having clause
- Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)
 from instructor
 group by dept_name)
 as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;

```
Database System Concepts - 7th Edition
```

3.44

Domain Types in SQL

- char(n). Fixed length character string, with user-specified length n.
- varchar(n). Variable length character strings, with user-specified maximum length n.
- int. Integer (a finite subset of the integers that is machine-dependent).
- smallint. Small integer (a machine-dependent subset of the integer domain type).
- numeric(p,d). Fixed point number, with user-specified precision of p digits, with d digits to the right of decimal point. (ex., numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or 0.32)
- real, double precision. Floating point and double-precision floating point numbers, with machinedependent precision.
- float(n). Floating point number, with user-specified precision of at least n digits.
- More are covered in Chapter 4.

Database System Concepts - 7th Edition

3.47

	And more still		
 create table cours course_id title dept_name credits primary key (foreign key (c 	e (varchar(8), varchar(50), varchar(20), numeric(2,0), course_id), lept_name) references department);		
Database System Concepts - 7th Edition	3.51	©Silberschatz, Korth and Sudarshan	

Modification of the Database

- Deletion of tuples from a given relation.
- Insertion of new tuples into a given relation
- Updating of values in some tuples in a given relation

Database System Concepts - 7th Edition

3.53

A	Insertion	
•	Add a new tuple to <i>course</i>	
	insert into <i>course</i> values ('CS-437', 'Database Systems', 'Comp. Sci.', 4)	;
•	or equivalently	
	insert into course (course_id, title, dept_name, credits) values ('CS-437', 'Database Systems', 'Comp. Sci.', 4)	;
	Add a new tuple to student with tot_creds set to null	
	insert into <i>student</i> values ('3003', 'Green', 'Finance', <i>null</i>);	
Database System Co	oncepts - 7 th Edition 3.56	©Silberschatz, Korth and Sudarshan

	Updates	
Give a 5	% salary raise to all instructors	
	update instructor set salary = salary * 1.05	
■ Give a 59	% salary raise to those instructors who earn less than 70000 update <i>instructor</i> set <i>salary</i> = <i>salary</i> * 1.05 where <i>salary</i> < 70000;	
 Give a 5% 	% salary raise to instructors whose salary is less than average	
	update instructor set salary = salary * 1.05 where salary < (select avg (salary) from instructor);	
Database System Concepts - 7th Editio	n 3.58	©Silberschatz, Korth and Sudarshan

Updates with Scalar Subqueries

Recompute and update tot_creds value for all students update student S set tot_cred = (select sum(credits) from takes, course where takes.course_id = course.course_id and S.ID= takes.ID.and takes.grade <> 'F' and takes.grade is not null); Sets tot_creds to null for students who have not taken any course Instead of sum(credits), use: case when sum(credits) is not null then sum(credits) else 0 end Database System Concepts - 7th Edition ©Silberschatz, Korth and Sudarshan

3.61