J 7 PURDUE | sumenttcomterscons

UNIVERSITY

CS 44800: Introduction To
Relational Database Systems

Prof. Chris Clifton
31 August 2021
Relational Algebra

Indiana

Genter for
Database

Systems

Relational Algebra

= A procedural language consisting of a set of operations that take one or two relations as input and
produce a new relation as their result.

= Six basic operators
select: ¢
project: [1
union: v
set difference: —
Cartesian product: x
rename: p

Database System Concepts - 7" Edition 3.4 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

Select Operation

= The select operation selects tuples that satisfy a given predicate.
* Notation: o, (r)
= pis called the selection predicate
= Example: select those tuples of the instructor relation where the instructor is in the “Physics”
department.
Query
O dept_name= “Physics” (instructor)
Result
‘ D ‘ name ‘ deptname ‘ salary ‘
\ 2022 \ Binstein \ Physics \ 95000 \
Database System Concepts - 7" Edition 3.5 ©Silberschatz, Korth and Sudarshan

Select Operation (Cont.)

= We allow comparisons using
=%, >, > <. <
in the selection predicate.
= We can combine several predicates into a larger predicate by using the connectives:
A (and), v (or), — (not)
= Example: Find the instructors in Physics with a salary greater $90,000, we write:

O dept_name= “Physics ”/\ salary > 90,000 (|nstructor)

= The select predicate may include comparisons between two attributes.
Example, find all departments whose name is the same as their building name:

Gdept_name:building (department)

Database System Concepts - 7" Edition 3.6 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

= Notation:

I ApAg Az Ay 0]

Database System Concepts - 7" Edition

3.7

= Duplicate rows removed from result, since relations are sets

Project Operation

= A unary operation that returns its argument relation, with certain attributes left out.

where A, A,, ..., A, are attribute names and r is a relation name.

= The result is defined as the relation of k columns obtained by erasing the columns that are not listed

©Silberschatz, Korth and Sudarshan

Project Operation Example

= Example: eliminate the dept_name attribute of instructor
= Query:
1_[ID, name, salary (instructor)
= Result:
| ID | name ’ salary ‘
10101 | Srinivasan | 65000
12121 | Wu 90000
15151 | Mozart 40000
22222 | Einstein 95000
32343 | El Said 60000
33456 | Gold 87000
45565 | Katz 75000
58583 | Califieri 62000
76543 | Singh 80000
76766 | Crick 72000
Database System Concepts - 7" Edition 3.8

©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

Composition of Relational Operations

= The result of a relational-algebra operation is relation and therefore of relational-algebra operations
can be composed together into a relational-algebra expression.

= Consider the query -- Find the names of all instructors in the Physics department.

Hname(o- dept_name = ‘Physics ” (inStrUCtor))

= |nstead of giving the name of a relation as the argument of the projection operation, we give an
expression that evaluates to a relation.

= Select name
from instructor
where dept_name = ‘Physics’ ;

Database System Concepts - 7" Edition 3.9 ©Silberschatz, Korth and Sudarshan

Cartesian-Product Operation

= The Cartesian-product operation (denoted by X) allows us to combine information from any two
relations.

= Example: the Cartesian product of the relations instructor and teaches is written as:
instructor X teaches

= We construct a tuple of the result out of each possible pair of tuples: one from the instructor relation
and one from the teaches relation (see next slide)

= Since the instructor ID appears in both relations we distinguish between these attribute by attaching
to the attribute the name of the relation from which the attribute originally came.

instructor.ID
teaches.ID

Database System Concepts - 7" Edition 3.10 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

The instructor X teaches table

instructor.ID ‘ name]:.'('p:_nuﬁm' salary ‘ .’earim.\..'D‘ courseid | secid | semester | year
| 10101 Srinivasan | Comp. Sci. | 65000 10101 | CS-101 1 |Fall 2017
10101 Srinivasan | Comp. Sci. | 65000 10101 | CS-315 1 Spring | 2018
10101 Srinivasan | Comp. Sci. | 65000 | 10101 | CS-347 1 Fall 2017
10101 Srinivasan | Comp. Sci. | 65000 12121 | FIN-201 1 Spring | 2018
10101 Srinivasan | Comp. Sci. | 65000 15151 MU-19% 1 Spring | 2018
10101 Srinivasan | Comp. Sci. | 65000 | 22222 | PHY-101 1 Fall 2017
12121 Wu Finance 90000 10101 | CS-101 1 Fall 2017
12121 Wu Finance 90000 10101 | CS-315 1 Spring | 2018
12121 Wu Finance 90000 10101 | CS-347 1 Fall 2017
12121 Wu Finance 90000 12121 | FIN-201 1 Spring | 2018
12121 Wu Finance | 90000 15151 |MU-199 I |Spring |20I8
12121 Wu Finance 90000 22222 | PHY-101 1 Fall 2017
15151 Mozart Music 40000 10101 | CSs-101 1 Fall 2017
15151 Mozart Music 40000 10101 | CS8-315 1 Spring | 2018
15151 Mozart Music 40000 | 10101 | CS-347 1 |Fall 2017
15151 Mozart Music 40000 12121 FIN-201 1 Spring | 2018
15151 Mozart Music 40000 15151 MU-199 1 Spring | 2018
15151 Mozart | Music 40000 22222 |PHY-101| 1 [Fal 2017
22222 Einstein | Physics 95000 10101 | CS-101 1 Fall 2017
22222 Einstein | Physics 95000 10101 | CS-315 1 Spring | 2018
22222 Einstein | Physics 95000 10101 | CS-347 1 Fall 2017
22222 Einstein | Physics 95000 12121 |FIN-201 1 Spring | 2018
22222 Einstein | Physics 95000 15151 MU-199 1 Spring | 2018
22222 Einstein | Physics 95000 22222 | PHY-101 1 Fall 2017
Database System Concepts - 7" Edition 3.11 ©Silberschatz, Korth and Sudarshan

Join Operation

= The Cartesian-Product
instructor X teaches
associates every tuple of instructor with every tuple of teaches.

Most of the resulting rows have information about instructors who did NOT teach a particular
course.

= To get only those tuples of “instructor X teaches “ that pertain to instructors and the courses that
they taught, we write:

O instructor.id = teaches.id (instructor X teaches))

We get only those tuples of “instructor X teaches” that pertain to instructors and the courses that
they taught.

= The result of this expression, shown in the next slide

Database System Concepts - 7" Edition 3.12 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

Join Operation (Cont.)

) Select *
= The table corresponding to: from instructor,teaches
O instructor.d = teaches.id (INStructor x teaches)) where instructor.id=teaches.id
| instructor.1D ‘ name | dept_name ‘ salary | teaches.ID | course_id | sec.id | semester | year |
10101 Srinivasan | Comp. Sci. | 65000 10101 [CS-101 1 |Fall 2017
10101 Srinivasan | Comp. Sci. | 65000 10101 [CS-315 I |Spring |2018
10101 Srinivasan | Comp. Sci. | 65000 10101 [CS-347 1 [Fall 2017
12121 Wu Finance | 90000| 12121 |FIN-201 I |Spring |2018
15151 Mozart Music 40000 15151 [|MU-199 I |Spring |2018
22222 | Einstein | Physics 95000 22222 |PHY-101| 1 [Fall 2017
32343 | El Said History 60000 | 32343 |HIS-351 1 |Spring | 2018
45565 | Katz Comp. Sci. | 75000 | 45565 |CS-101 1 |Spring |2018
45565 | Katz Comp. Sci. | 75000 | 45565 |CS-319 1 |Spring |2018
76766 | Crick Biology 72000 | 76766 |BIO-101 I | Summer | 2017
76766 | Crick Biology 72000 76766 |BIO-301 1 | Summer | 2018
83821 | Brandt Comp. Sci. | 92000 83821 | CS-190 1 |Spring |2017
83821 Brandt Comp. Sci.|92000| 83821 |(CS-190 2 |Spring | 2017
Database System Concepts - 7" Edition 3.13 ©Silberschatz, Korth and Sudarshan

Join Operation (Cont.)

= The join operation allows us to combine a select operation and a Cartesian-Product operation into
a single operation.

= Consider relations r (R) and s (S)

= Let “theta” be a predicate on attributes in the schema R “union” S. The join operation r x4 s is
defined as follows:

TNgSZO'g(TXS)

= Thus

O instructor.id = teaches.id (instructor X teaches))

= Can equivalently be written as

Instructor s Instructor.id = teaches.id teaches.

Database System Concepts - 7" Edition 3.14 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

Union Operation

The union operation allows us to combine two relations
= Notation: r US

= Forr v sto be valid.

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (example: 2nd

column of r deals with the same type of values as does the
2nd column of s)

Example: to find all courses taught in the Fall 2017 semester, or in the Spring 2018 semester, or in
both

l_[course_id (U semester=‘Fall” A year=2017 (section)) Y

1—L:oursefid (O' semester= “Spring ” A year=2018 (SeCtion))

Database System Concepts - 7" Edition 3.15

©Silberschatz, Korth and Sudarshan

Union Operation (Cont.)

= Result of:

1_[course_id (O- semester= ‘Fall” A year=2017 (SECtiOT’I)) Y

l—Icourse_id (U semester= “Spring ” A year=2018 (section))

course_id
CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Database System Concepts - 7" Edition 3.16 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

Set-Intersection Operation

= The set-intersection operation allows us to find tuples that are in both the input relations.
= Notation: rn's
= Assume:
r, s have the same arity
attributes of r and s are compatible
= Example: Find the set of all courses taught in both the Fall 2017 and the Spring 2018 semesters.

1—L:oursefid (O- semester= ‘Fall” A year=2017 (SeCtiO_n)) N
l_[course_id (O_semester: “Spring ” A year=2018 (sectlon))

Result
course_id
CS-101
Database System Concepts - 7" Edition 3.17 ©Silberschatz, Korth and Sudarshan

Set Difference Operation

= The set-difference operation allows us to find tuples that are in one relation but are not in another.
= Notationr—s
= Set differences must be taken between compatible relations.

r and s must have the same arity

attribute domains of r and s must be compatible

= Example: to find all courses taught in the Fall 2017 semester, but not in the Spring 2018 semester

l—Icourse_id (U semester=‘Fall” A year=2017 (seCtion))

1_[course_id (O- semester= “Spring ” A year=2018 (section))

‘ course_id ‘

CS-347
PHY-101

Database System Concepts - 7" Edition 3.18 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

The Assignment Operation

= |tis convenient at times to write a relational-algebra expression by assigning parts of it to temporary
relation variables.

= The assignment operation is denoted by « and works like assignment in a programming language.
= Example: Find all instructor in the “Physics” and Music department.

PhysicS < 0 gept_name= ‘Physics 7 (INstructor)
MUSIC <~ O gept name= “Music” (instructor)
Physics U Music

= With the assignment operation, a query can be written as a sequential program consisting of a series
of assignments followed by an expression whose value is displayed as the result of the query.

Database System Concepts - 7" Edition 3.19 ©Silberschatz, Korth and Sudarshan

The Rename Operation

= The results of relational-algebra expressions do not have a name that we can use to refer to them.
The rename operator, p, is provided for that purpose

= The expression:
#x (E)
returns the result of expression E under the name x
= Another form of the rename operation:

Px(A1,A2, .. An) (E)

Database System Concepts - 7" Edition 3.20 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

Equivalent Queries

= There is more than one way to write a query in relational algebra.
= Example: Find information about courses taught by instructors in the Physics department
= Queryl

Odept_name= ‘Physics v(iﬂStTUCtOI’ ™ instructor.ID = teaches.ID teaches)

= Query 2
(o—dept_name: “Physics v(iﬂStTUCtOI’)) ™ instructor.ID = teaches.ID teaches

= The two queries are not identical; they are, however, equivalent -- they give the same result on any
database.

Database System Concepts - 7" Edition 3.21 ©Silberschatz, Korth and Sudarshan

Equivalent Queries

= There is more than one way to write a query in relational algebra.

= Example: Find information about courses taught by instructors in the Physics department with salary
greater than 90,000

= Query1l
O dept_name= “Physics ”/\ salary > 90,000 (instructor)
= Query 2
O dept_name= ‘Physics "(O- salary > 90.000 (instructor))

= The two queries are not identical; they are, however, equivalent -- they give the same result on any
database.

Database System Concepts - 7" Edition 3.22 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

10

27
PORDYE Extended Projection

Department of Computer Science

 Allow the columns in the projection to be functions of one
or more columns in the argument relation.

« Example

" R= Tassaa(R) =
1 2 3 1 1
3 4 7 3 3

27
PORDUE Aggregation Operators

Department of Computer Science

* Summarize a column in some way.
— Operate over multiple tuples
» Five standard operators: Sum, Average, Count, Min, and Max.
— Use with grouping (see next slide) or shorthand as “special” projection:

. R -

1 2

3 4
* Tovax), Ming) (R) =Max(A) Min(B)
. 3 2

« Remember: Aggregations return a single row — can’t combine with non-
aggregates in projection

© 2020 Christopher W. Clifton

11

J 7 PURDUE | sumenttcomterscons

UNIVERSITY

CS 44800: Introduction To
Relational Database Systems

Prof. Chris Clifton
31 August 2021
Aggregation

| ndiana
Genter for
Database

Systems

™

Aggregate Functions Examples

= Find the average salary of instructors in the Computer Science department :
avg(salary)(odeptfname = ‘Comp. Sci. ,(instru CtOI’)),
select avg (salary)
from instructor
where dept_name= '‘Comp. Sci.";
= Find the total number of instructors who teach a course in the Spring 2018 semester

select count (distinct ID)

from teaches

where semester = 'Spring' and year = 2018;
= Find the number of tuples in the course relation

select count (*)
from course;

Database System Concepts - 7" Edition 3.26 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

2

PURDUE

UNIVERSITY

Department of Computer Science

is computed by:

Grouping Operator

Y (R), where L is a list of elements that are either
a) Individual (grouping) attributes or

b) Of the form 6(A), where 6 is an aggregation operator
and A the attribute to which it is applied,

1. Group R according to all the grouping attributes on list L.
2. Within each group, compute 6(A), for each element 6(A) on list L.

3. Result is the relation whose columns consist of one tuple for
each group. The components of that tuple are the values
associated with each element of L for that group.

from instructor
group by dept_name;

Database System Concepts - 7" Edition

‘ ID ’ name l dept_name ’ salary ‘
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

select dept_name, avg (salary) as avg_salary

dept_name

Biology \
Comp. Sci.
Elec. Eng.
Finance
History
Music
Physics

J’_ Aggregate Functions — Group By

* Find the average salary of instructors in each department: Yy name, avg(salary)instructor)

avg_salary

72000
77333
80000
85000
61000
40000
91000

3.28

©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

13

Jr- Aggregation (Cont.)

= Attributes in select clause outside of aggregate functions must appear in group by list

/* erroneous query */

select dept_name, ID, avg (salary)
from instructor

group by dept_name;

Database System Concepts - 7" Edition 3.29 ©Silberschatz, Korth and Sudarshan

J’_ Aggregate Functions — Having Clause

= Find the names and average salaries of all departments whose average salary is greater than 42000

select dept_name, avg (salary) as avg_salary
from instructor

group by dept_name

having avg (salary) > 42000;

= Note: predicates in the having clause are applied after the formation of groups whereas predicates in
the where clause are applied before forming groups

Database System Concepts - 7" Edition 3.30 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

14

Null Values

= |tis possible for tuples to have a null value, denoted by null, for some of their attributes
= null signifies an unknown value or that a value does not exist.
= The result of any arithmetic expression involving null is null
Example: 5+ null returns null
= The predicate is null can be used to check for null values.
Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

= The predicate is not null succeeds if the value on which it is applied is not null.

Database System Concepts - 7" Edition 3.31 ©Silberschatz, Korth and Sudarshan

Null Values (Cont.)

= SQL treats as unknown the result of any comparison involving a null value (other than predicates is
null and is not null).

Example: 5 <null or null<>null or null=null

= The predicate in a where clause can involve Boolean operations (and, or, not); thus the definitions of
the Boolean operations need to be extended to deal with the value unknown.

and : (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

or: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

= Result of where clause predicate is treated as false if it evaluates to unknown

Database System Concepts - 7" Edition 3.32 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

15

Nested Subqueries

= SQL provides a mechanism for the nesting of subqueries. A subquery is a select-from-where
expression that is nested within another query.

= The nesting can be done in the following SQL query

select A, A, .. A,
fromry, 1y, ..y Iy
where P
as follows:
From clause: r; can be replaced by any valid subquery
Where clause: P can be replaced with an expression of the form:
B <operation> (subquery)
B is an attribute and <operation> to be defined later.
Select clause:
A; can be replaced be a subquery that generates a single value.

Database System Concepts - 7" Edition 3.33 ©Silberschatz, Korth and Sudarshan

27
PURDUE “Breaking” the Model

« Some SQL constructs break the traditional relational
model
select bar
from sells
where beer in

(select favorite _beer from drinkers);

« What is the equivalent relational algebra?
— Why does it break the model?

CS54100

© 2020 Christopher W. Clifton

16

2

PORDYE Relational Algebra
Department of Computer Science
o SELECT A
UNARY
m™ PROJECT
X CARTESIAN PRODUCT > FUNDAMENTAL
U UNION BINARY
— SET-DIFFERENCE
<
N SET-INTERSECTION
‘>9<'THETA-JOIN CAN BE DEFINED
> NATURAL JOIN IN TERMS OF
+ DIVISION or QUOTIENT D, FUNDAMENTAL OPS

E PURDUE Department of Computer Science

UNIVERSITY

SOL

© 2020 Christopher W. Clifton

17

SQL History

= |BM Sequel language developed as part of System R project at the IBM San Jose Research
Laboratory

= Renamed Structured Query Language (SQL)
= ANSI and ISO standard SQL:
SQL-86
SQL-89
SQL-92
SQL:1999 (language name became Y2K compliant!)
SQL:2003

= Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from later
standards and special proprietary features.

Not all examples here may work on your particular system.

Database System Concepts - 7" Edition 3.37 ©Silberschatz, Korth and Sudarshan

SQL Parts

= DML -- provides the ability to query information from the database and to insert tuples into, delete
tuples from, and modify tuples in the database.

= integrity — the DDL includes commands for specifying integrity constraints.
= View definition -- The DDL includes commands for defining views.
= Transaction control —includes commands for specifying the beginning and ending of transactions.

= Embedded SQL and dynamic SQL -- define how SQL statements can be embedded within general-
purpose programming languages.

= Authorization — includes commands for specifying access rights to relations and views.

Database System Concepts - 7" Edition 3.38 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

18

The Rename Operation (SQL)

= The SQL allows renaming relations and attributes using the as clause:
old-name as new-name
= Find the names of all instructors who have a higher salary than
some instructor in 'Comp. Sci'.

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

= Keyword as is optional and may be omitted
instructor as T = instructor T

Database System Concepts - 7" Edition 3.39 ©Silberschatz, Korth and Sudarshan

Self Join Example

= Relation emp-super

person | supervisor
Bob Alice
Mary Susan
Alice David
David Mary

= Find the supervisor of “Bob”
= Find the supervisor of the supervisor of “Bob”
= Canyou find ALL the supervisors (direct and indirect) of “Bob”?

Database System Concepts - 7" Edition 3.40 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

String Operations

= SQL includes a string-matching operator for comparisons on character strings. The operator like
uses patterns that are described using two special characters:

percent (%). The % character matches any substring.
underscore (_). The _ character matches any character.
= Find the names of all instructors whose name includes the substring “dar”.

select name
from instructor
where name like '%dar%'

= Match the string “100%”
like '100 \%' escape '\'
in that above we use backslash (\) as the escape character.

Database System Concepts - 7" Edition 3.41 ©Silberschatz, Korth and Sudarshan

Ordering the Display of Tuples

= Listin alphabetic order the names of all instructors

select distinct name
from instructor
order by name

= We may specify desc for descending order or asc for ascending order, for each attribute; ascending
order is the default.

Example: order by name desc
= Can sort on multiple attributes
Example: order by dept_name, name

Database System Concepts - 7" Edition 3.42 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

Subqueries in the From Clause

SQL allows a subquery expression to be used in the from clause

Find the average instructors’ salaries of those departments where the average salary is greater than

$42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name)

where avg_salary > 42000;

Note that we do not need to use the having clause
Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor

group by dept_name)

as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;

Database System Concepts - 7" Edition 3.44

©Silberschatz, Korth and Sudarshan

Data Definition Language

The SQL data-definition language (DDL) allows the specification of
information about relations, including:

= The schema for each relation.

= The type of values associated with each attribute.

= The Integrity constraints

= The set of indices to be maintained for each relation.

= Security and authorization information for each relation.

= The physical storage structure of each relation on disk.

Database System Concepts - 7" Edition 3.46

©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

21

Domain Types in SQL

= char(n). Fixed length character string, with user-specified length n.

= varchar(n). Variable length character strings, with user-specified maximum length n.
= int. Integer (a finite subset of the integers that is machine-dependent).

= smallint. Small integer (a machine-dependent subset of the integer domain type).

= numeric(p,d). Fixed point number, with user-specified precision of p digits, with d digits to the right of
decimal point. (ex., numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or 0.32)

= real, double precision. Floating point and double-precision floating point numbers, with machine-
dependent precision.

= float(n). Floating point number, with user-specified precision of at least n digits.
= More are covered in Chapter 4.

Database System Concepts - 7" Edition 3.47 ©Silberschatz, Korth and Sudarshan

Create Table Construct

= An SQL relation is defined using the create table command:
create table r
(A, Dy, A, Dy, ..., A, D,
(integrity-constraint,),
(integ;rity-constraintk))
r is the name of the relation
each A, is an attribute name in the schema of relation r
D, is the data type of values in the domain of attribute A

= Example:
create table instructor (
ID char(b),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))
Database System Concepts - 7" Edition 3.48 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

22

Integrity Constraints in Create Table

= Types of integrity constraints

primary key (A, ..., A,)

foreign key (A, ..., A,) references r

not null
= SQL prevents any update to the database that violates an integrity constraint.
= Example:

create table instructor (
ID char(b),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department);

Database System Concepts - 7" Edition 3.49 ©Silberschatz, Korth and Sudarshan

And a Few More Relation Definitions

= create table student (

ID varchar(5),

name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),

primary key (ID),
foreign key (dept_name) references department);

= create table takes (

ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),

primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

Database System Concepts - 7" Edition 3.50 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

23

And more still

= create table course (

course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),

primary key (course_id),
foreign key (dept_name) references department);

3.51 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 7" Edition

Updates to tables

= Insert
insert into instructor values ('10211', 'Smith’, '‘Biology', 66000);
= Delete

Remove all tuples from the student relation
= delete from student

= Drop Table
drop table r
= Alter

alter tableradd AD
where A is the name of the attribute to be added to relation r and D is the domain of A.

= All exiting tuples in the relation are assigned null as the value for the new attribute.
alter table r drop A

= where A is the name of an attribute of relation r

= Dropping of attributes not supported by many databases.

3.52 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 7" Edition

© 2020 Christopher W. Clifton

Modification of the Database

= Deletion of tuples from a given relation.
= |nsertion of new tuples into a given relation
= Updating of values in some tuples in a given relation

Database System Concepts - 7" Edition 3.53 ©Silberschatz, Korth and Sudarshan

Deletion

= Delete all instructors
delete from instructor

= Delete all instructors from the Finance department
delete from instructor
where dept_name= 'Finance’;

= Delete all tuples in the instructor relation for those instructors associated with a department located in
the Watson building.

delete from instructor
where dept name in (select dept name
from department
where building = 'Watson');

Database System Concepts - 7" Edition 3.54 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

25

Deletion (Cont.)

= Delete all instructors whose salary is less than the average salary of instructors

delete from instructor
where salary < (select avg (salary)
from instructor);
Problem: as we delete tuples from instructor, the average salary changes

Solution used in SQL:
1. First, compute avg (salary) and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or retesting the tuples)

Database System Concepts - 7" Edition 3.55 ©Silberschatz, Korth and Sudarshan

Insertion

= Add a new tuple to course

insert into course
values ('CS-437', 'Database Systems', ‘Comp. Sci.', 4);

= or equivalently

insert into course (course_id, title, dept_name, credits)
values ('CS-437', 'Database Systems', ‘Comp. Sci.', 4);

= Add a new tuple to student with tot_creds set to null

insert into student
values ('3003', 'Green', 'Finance’, null);

Database System Concepts - 7" Edition 3.56 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

26

Insertion (Cont.)

= Make each student in the Music department who has earned more than 144 credit hours an instructor
in the Music department with a salary of $18,000.

insert into instructor
select ID, name, dept_name, 18000
from student
where dept_name = 'Music' and total_cred > 144;

= The select from where statement is evaluated fully before any of its results are inserted into the
relation.

Otherwise queries like
insert into tablel select * from tablel
would cause problem

Database System Concepts - 7" Edition 3.57 ©Silberschatz, Korth and Sudarshan

Updates

= Give a 5% salary raise to all instructors

update instructor
set salary = salary * 1.05

= Give a 5% salary raise to those instructors who earn less than 70000
update instructor
set salary = salary * 1.05
where salary < 70000;

= Give a 5% salary raise to instructors whose salary is less than average

update instructor

set salary = salary * 1.05

where salary < (select avg (salary)
from instructor);

Database System Concepts - 7" Edition 3.58 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

27

Updates (Cont.)

= Increase salaries of instructors whose salary is over $100,000 by 3%, and all others by a 5%
Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;

The order is important
Can be done better using the case statement (next slide)

Database System Concepts - 7" Edition 3.59 ©Silberschatz, Korth and Sudarshan

Case Statement for Conditional Updates

= Same query as before but with case statement

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

Database System Concepts - 7" Edition 3.60 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

28

Updates with Scalar Subqueries

= Recompute and update tot_creds value for all students

update student S
set tot_cred = (select sum(credits)
from takes, course
where takes.course_id = course.course_id and
S.ID=takes.ID.and
takes.grade <>'F' and
takes.grade is not null);

= Sets tot_creds to null for students who have not taken any course
= |nstead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0
end
Database System Concepts - 7" Edition 3.61 ©Silberschatz, Korth and Sudarshan

© 2020 Christopher W. Clifton

29

