
©Jan-20 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Prof. Chris Clifton

31 August 2021

Relational Algebra

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 7th Edition

Relational Algebra

 A procedural language consisting of a set of operations that take one or two relations as input and

produce a new relation as their result.

 Six basic operators

• select:

• project:

• union:

• set difference: –

• Cartesian product: x

• rename:

©Jan-20 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 7th Edition

Select Operation

 The select operation selects tuples that satisfy a given predicate.

 Notation: p (r)

 p is called the selection predicate

 Example: select those tuples of the instructor relation where the instructor is in the “Physics”
department.

• Query

 dept_name=“Physics” (instructor)

• Result

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 7th Edition

Select Operation (Cont.)

 We allow comparisons using

=, , >, . <.

in the selection predicate.

 We can combine several predicates into a larger predicate by using the connectives:

 (and), (or), (not)

 Example: Find the instructors in Physics with a salary greater $90,000, we write:

 dept_name=“Physics” salary > 90,000 (instructor)

 The select predicate may include comparisons between two attributes.

• Example, find all departments whose name is the same as their building name:

• dept_name=building (department)

©Jan-20 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 7th Edition

Project Operation

 A unary operation that returns its argument relation, with certain attributes left out.

 Notation:

 A1,A2,A3 ….Ak
(r)

where A1, A2, …, Ak are attribute names and r is a relation name.

 The result is defined as the relation of k columns obtained by erasing the columns that are not listed

 Duplicate rows removed from result, since relations are sets

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 7th Edition

Project Operation Example

 Example: eliminate the dept_name attribute of instructor

 Query:

ID, name, salary (instructor)

 Result:

©Jan-20 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 7th Edition

Composition of Relational Operations

 The result of a relational-algebra operation is relation and therefore of relational-algebra operations

can be composed together into a relational-algebra expression.

 Consider the query -- Find the names of all instructors in the Physics department.

name(dept_name =“Physics” (instructor))

 Instead of giving the name of a relation as the argument of the projection operation, we give an
expression that evaluates to a relation.

 Select name
from instructor
where dept_name = ‘Physics’ ;

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 7th Edition

Cartesian-Product Operation

 The Cartesian-product operation (denoted by X) allows us to combine information from any two

relations.

 Example: the Cartesian product of the relations instructor and teaches is written as:

instructor X teaches

 We construct a tuple of the result out of each possible pair of tuples: one from the instructor relation

and one from the teaches relation (see next slide)

 Since the instructor ID appears in both relations we distinguish between these attribute by attaching

to the attribute the name of the relation from which the attribute originally came.

• instructor.ID

• teaches.ID

©Jan-20 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 7th Edition

The instructor X teaches table

©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 7th Edition

Join Operation

 The Cartesian-Product

instructor X teaches

associates every tuple of instructor with every tuple of teaches.

• Most of the resulting rows have information about instructors who did NOT teach a particular

course.

 To get only those tuples of “instructor X teaches “ that pertain to instructors and the courses that

they taught, we write:

 instructor.id = teaches.id (instructor x teaches))

• We get only those tuples of “instructor X teaches” that pertain to instructors and the courses that

they taught.

 The result of this expression, shown in the next slide

©Jan-20 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan3.13Database System Concepts - 7th Edition

Join Operation (Cont.)

 The table corresponding to:

 instructor.id = teaches.id (instructor x teaches))

Select *

from instructor,teaches

where instructor.id=teaches.id

©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 7th Edition

Join Operation (Cont.)

 The join operation allows us to combine a select operation and a Cartesian-Product operation into

a single operation.

 Consider relations r (R) and s (S)

 Let “theta” be a predicate on attributes in the schema R “union” S. The join operation r ⋈𝜃 s is

defined as follows:

𝑟 ⋈𝜃 𝑠 = 𝜎𝜃 (𝑟 × 𝑠)

 Thus

 instructor.id = teaches.id (instructor x teaches))

 Can equivalently be written as

instructor ⋈ Instructor.id = teaches.id teaches.

©Jan-20 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 7th Edition

Union Operation

 The union operation allows us to combine two relations

 Notation: r s

 For r s to be valid.

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (example: 2nd

column of r deals with the same type of values as does the

2nd column of s)

 Example: to find all courses taught in the Fall 2017 semester, or in the Spring 2018 semester, or in

both

course_id (semester=“Fall” Λ year=2017 (section))

course_id (semester=“Spring” Λ year=2018 (section))

©Silberschatz, Korth and Sudarshan3.16Database System Concepts - 7th Edition

Union Operation (Cont.)

 Result of:

course_id (semester=“Fall” Λ year=2017 (section))

course_id (semester=“Spring” Λ year=2018 (section))

©Jan-20 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 7th Edition

Set-Intersection Operation

 The set-intersection operation allows us to find tuples that are in both the input relations.

 Notation: r s

 Assume:

• r, s have the same arity

• attributes of r and s are compatible

 Example: Find the set of all courses taught in both the Fall 2017 and the Spring 2018 semesters.

course_id (semester=“Fall” Λ year=2017 (section))

course_id (semester=“Spring” Λ year=2018 (section))

• Result

©Silberschatz, Korth and Sudarshan3.18Database System Concepts - 7th Edition

Set Difference Operation

 The set-difference operation allows us to find tuples that are in one relation but are not in another.

 Notation r – s

 Set differences must be taken between compatible relations.

• r and s must have the same arity

• attribute domains of r and s must be compatible

 Example: to find all courses taught in the Fall 2017 semester, but not in the Spring 2018 semester

course_id (semester=“Fall” Λ year=2017 (section)) −

course_id (semester=“Spring” Λ year=2018 (section))

©Jan-20 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 7th Edition

The Assignment Operation

 It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary

relation variables.

 The assignment operation is denoted by and works like assignment in a programming language.

 Example: Find all instructor in the “Physics” and Music department.

Physics dept_name=“Physics” (instructor)

Music dept_name=“Music” (instructor)

Physics Music

 With the assignment operation, a query can be written as a sequential program consisting of a series

of assignments followed by an expression whose value is displayed as the result of the query.

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 7th Edition

The Rename Operation

 The results of relational-algebra expressions do not have a name that we can use to refer to them.

The rename operator, , is provided for that purpose

 The expression:

x (E)

returns the result of expression E under the name x

 Another form of the rename operation:

x(A1,A2, .. An) (E)

©Jan-20 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 7th Edition

Equivalent Queries

 There is more than one way to write a query in relational algebra.

 Example: Find information about courses taught by instructors in the Physics department

 Query 1

dept_name=“Physics” (instructor ⋈ instructor.ID = teaches.ID teaches)

 Query 2

(dept_name=“Physics” (instructor)) ⋈ instructor.ID = teaches.ID teaches

 The two queries are not identical; they are, however, equivalent -- they give the same result on any
database.

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 7th Edition

Equivalent Queries

 There is more than one way to write a query in relational algebra.

 Example: Find information about courses taught by instructors in the Physics department with salary

greater than 90,000

 Query 1

 dept_name=“Physics” salary > 90,000 (instructor)

 Query 2

 dept_name=“Physics” (salary > 90.000 (instructor))

 The two queries are not identical; they are, however, equivalent -- they give the same result on any
database.

©Jan-20 Christopher W. Clifton 1120

Extended Projection

• Allow the columns in the projection to be functions of one

or more columns in the argument relation.

• Example

• R = A+B,A,A(R) =A B

1 2

3 4

A+B A1 A2

3 1 1

7 3 3

Aggregation Operators

• Summarize a column in some way.
– Operate over multiple tuples

• Five standard operators: Sum, Average, Count, Min, and Max.
– Use with grouping (see next slide) or shorthand as “special” projection:

• R =

• Max(A), Min(B) (R) =Max(A) Min(B)

• 3 2

• Remember: Aggregations return a single row – can’t combine with non-
aggregates in projection

A B

1 2

3 4

©Jan-20 Christopher W. Clifton 1220

CS 44800: Introduction To

Relational Database Systems

Prof. Chris Clifton

31 August 2021

Aggregation

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 7th Edition

Aggregate Functions Examples

 Find the average salary of instructors in the Computer Science department :
Π

avg(salary)(σdept_name = ‘Comp. Sci.’(instructor)),

• select avg (salary)

from instructor

where dept_name= 'Comp. Sci.';

 Find the total number of instructors who teach a course in the Spring 2018 semester

• select count (distinct ID)

from teaches

where semester = 'Spring' and year = 2018;

 Find the number of tuples in the course relation

• select count (*)

from course;

©Jan-20 Christopher W. Clifton 1320

Grouping Operator

L(R), where L is a list of elements that are either

a) Individual (grouping) attributes or

b) Of the form (A), where is an aggregation operator
and A the attribute to which it is applied,

is computed by:

1. Group R according to all the grouping attributes on list L.

2. Within each group, compute (A), for each element (A) on list L.

3. Result is the relation whose columns consist of one tuple for
each group. The components of that tuple are the values
associated with each element of L for that group.

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 7th Edition

Aggregate Functions – Group By

 Find the average salary of instructors in each department: dept_name, avg(salary)(instructor)

• select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

©Jan-20 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 7th Edition

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must appear in group by list

• /* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 7th Edition

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose average salary is greater than 42000

 Note: predicates in the having clause are applied after the formation of groups whereas predicates in

the where clause are applied before forming groups

select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name

having avg (salary) > 42000;

©Jan-20 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 7th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

 The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null.

select name

from instructor

where salary is null

 The predicate is not null succeeds if the value on which it is applied is not null.

©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 7th Edition

Null Values (Cont.)

 SQL treats as unknown the result of any comparison involving a null value (other than predicates is

null and is not null).

• Example: 5 < null or null <> null or null = null

 The predicate in a where clause can involve Boolean operations (and, or, not); thus the definitions of

the Boolean operations need to be extended to deal with the value unknown.

• and : (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

• or: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

 Result of where clause predicate is treated as false if it evaluates to unknown

©Jan-20 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 7th Edition

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries. A subquery is a select-from-where

expression that is nested within another query.

 The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

• From clause: ri can be replaced by any valid subquery

• Where clause: P can be replaced with an expression of the form:

B <operation> (subquery)

B is an attribute and <operation> to be defined later.

• Select clause:

Ai can be replaced be a subquery that generates a single value.

“Breaking” the Model

• Some SQL constructs break the traditional relational

model

select bar

from sells

where beer in

(select favorite_beer from drinkers);

• What is the equivalent relational algebra?

– Why does it break the model?

CS54100

©Jan-20 Christopher W. Clifton 1720

UNARY
 SELECT

π PROJECT

X CARTESIAN PRODUCT FUNDAMENTAL

U UNION BINARY

– SET-DIFFERENCE

 SET-INTERSECTION

THETA-JOIN CAN BE DEFINED

NATURAL JOIN IN TERMS OF

÷ DIVISION or QUOTIENT FUNDAMENTAL OPS

Relational Algebra

SQL

©Jan-20 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 7th Edition

SQL History

 IBM Sequel language developed as part of System R project at the IBM San Jose Research

Laboratory

 Renamed Structured Query Language (SQL)

 ANSI and ISO standard SQL:

• SQL-86

• SQL-89

• SQL-92

• SQL:1999 (language name became Y2K compliant!)

• SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from later

standards and special proprietary features.

• Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 7th Edition

SQL Parts

 DML -- provides the ability to query information from the database and to insert tuples into, delete

tuples from, and modify tuples in the database.

 integrity – the DDL includes commands for specifying integrity constraints.

 View definition -- The DDL includes commands for defining views.

 Transaction control –includes commands for specifying the beginning and ending of transactions.

 Embedded SQL and dynamic SQL -- define how SQL statements can be embedded within general-

purpose programming languages.

 Authorization – includes commands for specifying access rights to relations and views.

©Jan-20 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 7th Edition

The Rename Operation (SQL)

 The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

 Find the names of all instructors who have a higher salary than

some instructor in 'Comp. Sci'.

• select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = 'Comp. Sci.’

 Keyword as is optional and may be omitted

instructor as T ≡ instructor T

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 7th Edition

Self Join Example

 Relation emp-super

 Find the supervisor of “Bob”

 Find the supervisor of the supervisor of “Bob”

 Can you find ALL the supervisors (direct and indirect) of “Bob”?

©Jan-20 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 7th Edition

String Operations

 SQL includes a string-matching operator for comparisons on character strings. The operator like

uses patterns that are described using two special characters:

• percent (%). The % character matches any substring.

• underscore (_). The _ character matches any character.

 Find the names of all instructors whose name includes the substring “dar”.

select name

from instructor

where name like '%dar%'

 Match the string “100%”

like '100 \%' escape '\'

in that above we use backslash (\) as the escape character.

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 7th Edition

Ordering the Display of Tuples

 List in alphabetic order the names of all instructors

select distinct name

from instructor

order by name

 We may specify desc for descending order or asc for ascending order, for each attribute; ascending

order is the default.

• Example: order by name desc

 Can sort on multiple attributes

• Example: order by dept_name, name

©Jan-20 Christopher W. Clifton 2120

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 7th Edition

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the average salary is greater than

$42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name)

where avg_salary > 42000;

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)

from instructor

group by dept_name)

as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 7th Edition

Data Definition Language

 The schema for each relation.

 The type of values associated with each attribute.

 The Integrity constraints

 The set of indices to be maintained for each relation.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the specification of

information about relations, including:

©Jan-20 Christopher W. Clifton 2220

©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 7th Edition

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits, with d digits to the right of
decimal point. (ex., numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or 0.32)

 real, double precision. Floating point and double-precision floating point numbers, with machine-
dependent precision.

 float(n). Floating point number, with user-specified precision of at least n digits.

 More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.48Database System Concepts - 7th Edition

Create Table Construct

 An SQL relation is defined using the create table command:

create table r

(A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),

...,

(integrity-constraintk))

• r is the name of the relation

• each Ai is an attribute name in the schema of relation r

• Di is the data type of values in the domain of attribute Ai

 Example:

create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

©Jan-20 Christopher W. Clifton 2320

©Silberschatz, Korth and Sudarshan3.49Database System Concepts - 7th Edition

Integrity Constraints in Create Table

 Types of integrity constraints

• primary key (A1, ..., An)

• foreign key (Am, ..., An) references r

• not null

 SQL prevents any update to the database that violates an integrity constraint.

 Example:

create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan3.50Database System Concepts - 7th Edition

And a Few More Relation Definitions

 create table student (
ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

 create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

©Jan-20 Christopher W. Clifton 2420

©Silberschatz, Korth and Sudarshan3.51Database System Concepts - 7th Edition

And more still

 create table course (

course_id varchar(8),

title varchar(50),

dept_name varchar(20),

credits numeric(2,0),

primary key (course_id),

foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan3.52Database System Concepts - 7th Edition

Updates to tables

 Insert

• insert into instructor values ('10211', 'Smith', 'Biology', 66000);

 Delete

• Remove all tuples from the student relation

 delete from student

 Drop Table

• drop table r

 Alter

• alter table r add A D

 where A is the name of the attribute to be added to relation r and D is the domain of A.

 All exiting tuples in the relation are assigned null as the value for the new attribute.

• alter table r drop A

 where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases.

©Jan-20 Christopher W. Clifton 2520

©Silberschatz, Korth and Sudarshan3.53Database System Concepts - 7th Edition

Modification of the Database

 Deletion of tuples from a given relation.

 Insertion of new tuples into a given relation

 Updating of values in some tuples in a given relation

©Silberschatz, Korth and Sudarshan3.54Database System Concepts - 7th Edition

Deletion

 Delete all instructors

delete from instructor

 Delete all instructors from the Finance department

delete from instructor

where dept_name= 'Finance’;

 Delete all tuples in the instructor relation for those instructors associated with a department located in

the Watson building.

delete from instructor

where dept name in (select dept name

from department

where building = 'Watson');

©Jan-20 Christopher W. Clifton 2620

©Silberschatz, Korth and Sudarshan3.55Database System Concepts - 7th Edition

Deletion (Cont.)

 Delete all instructors whose salary is less than the average salary of instructors

• Problem: as we delete tuples from instructor, the average salary changes

• Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or retesting the tuples)

delete from instructor

where salary < (select avg (salary)

from instructor);

©Silberschatz, Korth and Sudarshan3.56Database System Concepts - 7th Edition

Insertion

 Add a new tuple to course

insert into course

values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

 or equivalently

insert into course (course_id, title, dept_name, credits)

values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

 Add a new tuple to student with tot_creds set to null

insert into student

values ('3003', 'Green', 'Finance', null);

©Jan-20 Christopher W. Clifton 2720

©Silberschatz, Korth and Sudarshan3.57Database System Concepts - 7th Edition

Insertion (Cont.)

 Make each student in the Music department who has earned more than 144 credit hours an instructor

in the Music department with a salary of $18,000.

insert into instructor

select ID, name, dept_name, 18000

from student

where dept_name = 'Music' and total_cred > 144;

 The select from where statement is evaluated fully before any of its results are inserted into the

relation.

Otherwise queries like

insert into table1 select * from table1

would cause problem

©Silberschatz, Korth and Sudarshan3.58Database System Concepts - 7th Edition

Updates

 Give a 5% salary raise to all instructors

update instructor

set salary = salary * 1.05

 Give a 5% salary raise to those instructors who earn less than 70000

update instructor

set salary = salary * 1.05

where salary < 70000;

 Give a 5% salary raise to instructors whose salary is less than average

update instructor

set salary = salary * 1.05

where salary < (select avg (salary)

from instructor);

©Jan-20 Christopher W. Clifton 2820

©Silberschatz, Korth and Sudarshan3.59Database System Concepts - 7th Edition

Updates (Cont.)

 Increase salaries of instructors whose salary is over $100,000 by 3%, and all others by a 5%

• Write two update statements:

update instructor

set salary = salary * 1.03

where salary > 100000;

update instructor

set salary = salary * 1.05

where salary <= 100000;

• The order is important

• Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.60Database System Concepts - 7th Edition

Case Statement for Conditional Updates

 Same query as before but with case statement

update instructor

set salary = case

when salary <= 100000 then salary * 1.05

else salary * 1.03

end

©Jan-20 Christopher W. Clifton 2920

©Silberschatz, Korth and Sudarshan3.61Database System Concepts - 7th Edition

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students

update student S

set tot_cred = (select sum(credits)

from takes, course

where takes.course_id = course.course_id and

S.ID= takes.ID.and

takes.grade <> 'F' and

takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course

 Instead of sum(credits), use:

case

when sum(credits) is not null then sum(credits)

else 0

end

