
©Jan-20 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Prof. Chris Clifton

31 August 2021

Relational Algebra

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 7th Edition

Relational Algebra

 A procedural language consisting of a set of operations that take one or two relations as input and

produce a new relation as their result.

 Six basic operators

• select: 

• project: 

• union: 

• set difference: –

• Cartesian product: x

• rename: 

©Jan-20 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 7th Edition

Select Operation

 The select operation selects tuples that satisfy a given predicate.

 Notation:  p (r)

 p is called the selection predicate

 Example: select those tuples of the instructor relation where the instructor is in the “Physics”
department.

• Query

 dept_name=“Physics” (instructor)

• Result

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 7th Edition

Select Operation (Cont.)

 We allow comparisons using

=, , >, . <. 

in the selection predicate.

 We can combine several predicates into a larger predicate by using the connectives:

 (and),  (or),  (not)

 Example: Find the instructors in Physics with a salary greater $90,000, we write:

 dept_name=“Physics”  salary > 90,000 (instructor)

 The select predicate may include comparisons between two attributes.

• Example, find all departments whose name is the same as their building name:

•  dept_name=building (department)

©Jan-20 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 7th Edition

Project Operation

 A unary operation that returns its argument relation, with certain attributes left out.

 Notation:

 A1,A2,A3 ….Ak
(r)

where A1, A2, …, Ak are attribute names and r is a relation name.

 The result is defined as the relation of k columns obtained by erasing the columns that are not listed

 Duplicate rows removed from result, since relations are sets

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 7th Edition

Project Operation Example

 Example: eliminate the dept_name attribute of instructor

 Query:

ID, name, salary (instructor)

 Result:

©Jan-20 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 7th Edition

Composition of Relational Operations

 The result of a relational-algebra operation is relation and therefore of relational-algebra operations

can be composed together into a relational-algebra expression.

 Consider the query -- Find the names of all instructors in the Physics department.

name( dept_name =“Physics” (instructor))

 Instead of giving the name of a relation as the argument of the projection operation, we give an
expression that evaluates to a relation.

 Select name
from instructor
where dept_name = ‘Physics’ ;

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 7th Edition

Cartesian-Product Operation

 The Cartesian-product operation (denoted by X) allows us to combine information from any two

relations.

 Example: the Cartesian product of the relations instructor and teaches is written as:

instructor X teaches

 We construct a tuple of the result out of each possible pair of tuples: one from the instructor relation

and one from the teaches relation (see next slide)

 Since the instructor ID appears in both relations we distinguish between these attribute by attaching

to the attribute the name of the relation from which the attribute originally came.

• instructor.ID

• teaches.ID

©Jan-20 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 7th Edition

The instructor X teaches table

©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 7th Edition

Join Operation

 The Cartesian-Product

instructor X teaches

associates every tuple of instructor with every tuple of teaches.

• Most of the resulting rows have information about instructors who did NOT teach a particular

course.

 To get only those tuples of “instructor X teaches “ that pertain to instructors and the courses that

they taught, we write:

 instructor.id = teaches.id (instructor x teaches))

• We get only those tuples of “instructor X teaches” that pertain to instructors and the courses that

they taught.

 The result of this expression, shown in the next slide

©Jan-20 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan3.13Database System Concepts - 7th Edition

Join Operation (Cont.)

 The table corresponding to:

 instructor.id = teaches.id (instructor x teaches))

Select *

from instructor,teaches

where instructor.id=teaches.id

©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 7th Edition

Join Operation (Cont.)

 The join operation allows us to combine a select operation and a Cartesian-Product operation into

a single operation.

 Consider relations r (R) and s (S)

 Let “theta” be a predicate on attributes in the schema R “union” S. The join operation r ⋈𝜃 s is

defined as follows:

𝑟 ⋈𝜃 𝑠 = 𝜎𝜃 (𝑟 × 𝑠)

 Thus

 instructor.id = teaches.id (instructor x teaches))

 Can equivalently be written as

instructor ⋈ Instructor.id = teaches.id teaches.

©Jan-20 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 7th Edition

Union Operation

 The union operation allows us to combine two relations

 Notation: r  s

 For r  s to be valid.

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (example: 2nd

column of r deals with the same type of values as does the

2nd column of s)

 Example: to find all courses taught in the Fall 2017 semester, or in the Spring 2018 semester, or in

both

course_id ( semester=“Fall” Λ year=2017 (section)) 

course_id ( semester=“Spring” Λ year=2018 (section))

©Silberschatz, Korth and Sudarshan3.16Database System Concepts - 7th Edition

Union Operation (Cont.)

 Result of:

course_id ( semester=“Fall” Λ year=2017 (section)) 

course_id ( semester=“Spring” Λ year=2018 (section))

©Jan-20 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 7th Edition

Set-Intersection Operation

 The set-intersection operation allows us to find tuples that are in both the input relations.

 Notation: r  s

 Assume:

• r, s have the same arity

• attributes of r and s are compatible

 Example: Find the set of all courses taught in both the Fall 2017 and the Spring 2018 semesters.

course_id ( semester=“Fall” Λ year=2017 (section)) 

course_id ( semester=“Spring” Λ year=2018 (section))

• Result

©Silberschatz, Korth and Sudarshan3.18Database System Concepts - 7th Edition

Set Difference Operation

 The set-difference operation allows us to find tuples that are in one relation but are not in another.

 Notation r – s

 Set differences must be taken between compatible relations.

• r and s must have the same arity

• attribute domains of r and s must be compatible

 Example: to find all courses taught in the Fall 2017 semester, but not in the Spring 2018 semester

course_id ( semester=“Fall” Λ year=2017 (section)) −

course_id ( semester=“Spring” Λ year=2018 (section))

©Jan-20 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 7th Edition

The Assignment Operation

 It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary

relation variables.

 The assignment operation is denoted by  and works like assignment in a programming language.

 Example: Find all instructor in the “Physics” and Music department.

Physics   dept_name=“Physics” (instructor)

Music   dept_name=“Music” (instructor)

Physics  Music

 With the assignment operation, a query can be written as a sequential program consisting of a series

of assignments followed by an expression whose value is displayed as the result of the query.

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 7th Edition

The Rename Operation

 The results of relational-algebra expressions do not have a name that we can use to refer to them.

The rename operator,  , is provided for that purpose

 The expression:

x (E)

returns the result of expression E under the name x

 Another form of the rename operation:

x(A1,A2, .. An) (E)

©Jan-20 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 7th Edition

Equivalent Queries

 There is more than one way to write a query in relational algebra.

 Example: Find information about courses taught by instructors in the Physics department

 Query 1

dept_name=“Physics” (instructor ⋈ instructor.ID = teaches.ID teaches)

 Query 2

(dept_name=“Physics” (instructor)) ⋈ instructor.ID = teaches.ID teaches

 The two queries are not identical; they are, however, equivalent -- they give the same result on any
database.

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 7th Edition

Equivalent Queries

 There is more than one way to write a query in relational algebra.

 Example: Find information about courses taught by instructors in the Physics department with salary

greater than 90,000

 Query 1

 dept_name=“Physics”  salary > 90,000 (instructor)

 Query 2

 dept_name=“Physics” ( salary > 90.000 (instructor))

 The two queries are not identical; they are, however, equivalent -- they give the same result on any
database.

©Jan-20 Christopher W. Clifton 1120

Extended Projection

• Allow the columns in the projection to be functions of one

or more columns in the argument relation.

• Example

• R = A+B,A,A(R) =A B

1 2

3 4

A+B A1 A2

3 1 1

7 3 3

Aggregation Operators

• Summarize a column in some way.
– Operate over multiple tuples

• Five standard operators: Sum, Average, Count, Min, and Max.
– Use with grouping (see next slide) or shorthand as “special” projection:

• R =

• Max(A), Min(B) (R) =Max(A) Min(B)

• 3 2

• Remember: Aggregations return a single row – can’t combine with non-
aggregates in projection

A B

1 2

3 4

©Jan-20 Christopher W. Clifton 1220

CS 44800: Introduction To

Relational Database Systems

Prof. Chris Clifton

31 August 2021

Aggregation

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 7th Edition

Aggregate Functions Examples

 Find the average salary of instructors in the Computer Science department :
Π

avg(salary)(σdept_name = ‘Comp. Sci.’(instructor)),

• select avg (salary)

from instructor

where dept_name= 'Comp. Sci.';

 Find the total number of instructors who teach a course in the Spring 2018 semester

• select count (distinct ID)

from teaches

where semester = 'Spring' and year = 2018;

 Find the number of tuples in the course relation

• select count (*)

from course;

©Jan-20 Christopher W. Clifton 1320

Grouping Operator


L(R), where L is a list of elements that are either

a) Individual (grouping) attributes or

b) Of the form (A), where  is an aggregation operator
and A the attribute to which it is applied,

is computed by:

1. Group R according to all the grouping attributes on list L.

2. Within each group, compute (A), for each element (A) on list L.

3. Result is the relation whose columns consist of one tuple for
each group. The components of that tuple are the values
associated with each element of L for that group.

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 7th Edition

Aggregate Functions – Group By

 Find the average salary of instructors in each department: dept_name, avg(salary)(instructor)

• select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

©Jan-20 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 7th Edition

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must appear in group by list

• /* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 7th Edition

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose average salary is greater than 42000

 Note: predicates in the having clause are applied after the formation of groups whereas predicates in

the where clause are applied before forming groups

select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name

having avg (salary) > 42000;

©Jan-20 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 7th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

 The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null.

select name

from instructor

where salary is null

 The predicate is not null succeeds if the value on which it is applied is not null.

©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 7th Edition

Null Values (Cont.)

 SQL treats as unknown the result of any comparison involving a null value (other than predicates is

null and is not null).

• Example: 5 < null or null <> null or null = null

 The predicate in a where clause can involve Boolean operations (and, or, not); thus the definitions of

the Boolean operations need to be extended to deal with the value unknown.

• and : (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

• or: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

 Result of where clause predicate is treated as false if it evaluates to unknown

©Jan-20 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 7th Edition

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries. A subquery is a select-from-where

expression that is nested within another query.

 The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

• From clause: ri can be replaced by any valid subquery

• Where clause: P can be replaced with an expression of the form:

B <operation> (subquery)

B is an attribute and <operation> to be defined later.

• Select clause:

Ai can be replaced be a subquery that generates a single value.

“Breaking” the Model

• Some SQL constructs break the traditional relational

model

select bar

from sells

where beer in

(select favorite_beer from drinkers);

• What is the equivalent relational algebra?

– Why does it break the model?

CS54100

©Jan-20 Christopher W. Clifton 1720

UNARY
 SELECT

π PROJECT

X CARTESIAN PRODUCT FUNDAMENTAL

U UNION BINARY

– SET-DIFFERENCE

 SET-INTERSECTION


THETA-JOIN CAN BE DEFINED

NATURAL JOIN IN TERMS OF

÷ DIVISION or QUOTIENT FUNDAMENTAL OPS

Relational Algebra

SQL

©Jan-20 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 7th Edition

SQL History

 IBM Sequel language developed as part of System R project at the IBM San Jose Research

Laboratory

 Renamed Structured Query Language (SQL)

 ANSI and ISO standard SQL:

• SQL-86

• SQL-89

• SQL-92

• SQL:1999 (language name became Y2K compliant!)

• SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from later

standards and special proprietary features.

• Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 7th Edition

SQL Parts

 DML -- provides the ability to query information from the database and to insert tuples into, delete

tuples from, and modify tuples in the database.

 integrity – the DDL includes commands for specifying integrity constraints.

 View definition -- The DDL includes commands for defining views.

 Transaction control –includes commands for specifying the beginning and ending of transactions.

 Embedded SQL and dynamic SQL -- define how SQL statements can be embedded within general-

purpose programming languages.

 Authorization – includes commands for specifying access rights to relations and views.

©Jan-20 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 7th Edition

The Rename Operation (SQL)

 The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

 Find the names of all instructors who have a higher salary than

some instructor in 'Comp. Sci'.

• select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = 'Comp. Sci.’

 Keyword as is optional and may be omitted

instructor as T ≡ instructor T

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 7th Edition

Self Join Example

 Relation emp-super

 Find the supervisor of “Bob”

 Find the supervisor of the supervisor of “Bob”

 Can you find ALL the supervisors (direct and indirect) of “Bob”?

©Jan-20 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 7th Edition

String Operations

 SQL includes a string-matching operator for comparisons on character strings. The operator like

uses patterns that are described using two special characters:

• percent (%). The % character matches any substring.

• underscore (_). The _ character matches any character.

 Find the names of all instructors whose name includes the substring “dar”.

select name

from instructor

where name like '%dar%'

 Match the string “100%”

like '100 \%' escape '\'

in that above we use backslash (\) as the escape character.

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 7th Edition

Ordering the Display of Tuples

 List in alphabetic order the names of all instructors

select distinct name

from instructor

order by name

 We may specify desc for descending order or asc for ascending order, for each attribute; ascending

order is the default.

• Example: order by name desc

 Can sort on multiple attributes

• Example: order by dept_name, name

©Jan-20 Christopher W. Clifton 2120

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 7th Edition

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the average salary is greater than

$42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name)

where avg_salary > 42000;

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)

from instructor

group by dept_name)

as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 7th Edition

Data Definition Language

 The schema for each relation.

 The type of values associated with each attribute.

 The Integrity constraints

 The set of indices to be maintained for each relation.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the specification of

information about relations, including:

©Jan-20 Christopher W. Clifton 2220

©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 7th Edition

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits, with d digits to the right of
decimal point. (ex., numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or 0.32)

 real, double precision. Floating point and double-precision floating point numbers, with machine-
dependent precision.

 float(n). Floating point number, with user-specified precision of at least n digits.

 More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.48Database System Concepts - 7th Edition

Create Table Construct

 An SQL relation is defined using the create table command:

create table r

(A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),

...,

(integrity-constraintk))

• r is the name of the relation

• each Ai is an attribute name in the schema of relation r

• Di is the data type of values in the domain of attribute Ai

 Example:

create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

©Jan-20 Christopher W. Clifton 2320

©Silberschatz, Korth and Sudarshan3.49Database System Concepts - 7th Edition

Integrity Constraints in Create Table

 Types of integrity constraints

• primary key (A1, ..., An)

• foreign key (Am, ..., An) references r

• not null

 SQL prevents any update to the database that violates an integrity constraint.

 Example:

create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan3.50Database System Concepts - 7th Edition

And a Few More Relation Definitions

 create table student (
ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

 create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

©Jan-20 Christopher W. Clifton 2420

©Silberschatz, Korth and Sudarshan3.51Database System Concepts - 7th Edition

And more still

 create table course (

course_id varchar(8),

title varchar(50),

dept_name varchar(20),

credits numeric(2,0),

primary key (course_id),

foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan3.52Database System Concepts - 7th Edition

Updates to tables

 Insert

• insert into instructor values ('10211', 'Smith', 'Biology', 66000);

 Delete

• Remove all tuples from the student relation

 delete from student

 Drop Table

• drop table r

 Alter

• alter table r add A D

 where A is the name of the attribute to be added to relation r and D is the domain of A.

 All exiting tuples in the relation are assigned null as the value for the new attribute.

• alter table r drop A

 where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases.

©Jan-20 Christopher W. Clifton 2520

©Silberschatz, Korth and Sudarshan3.53Database System Concepts - 7th Edition

Modification of the Database

 Deletion of tuples from a given relation.

 Insertion of new tuples into a given relation

 Updating of values in some tuples in a given relation

©Silberschatz, Korth and Sudarshan3.54Database System Concepts - 7th Edition

Deletion

 Delete all instructors

delete from instructor

 Delete all instructors from the Finance department

delete from instructor

where dept_name= 'Finance’;

 Delete all tuples in the instructor relation for those instructors associated with a department located in

the Watson building.

delete from instructor

where dept name in (select dept name

from department

where building = 'Watson');

©Jan-20 Christopher W. Clifton 2620

©Silberschatz, Korth and Sudarshan3.55Database System Concepts - 7th Edition

Deletion (Cont.)

 Delete all instructors whose salary is less than the average salary of instructors

• Problem: as we delete tuples from instructor, the average salary changes

• Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or retesting the tuples)

delete from instructor

where salary < (select avg (salary)

from instructor);

©Silberschatz, Korth and Sudarshan3.56Database System Concepts - 7th Edition

Insertion

 Add a new tuple to course

insert into course

values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

 or equivalently

insert into course (course_id, title, dept_name, credits)

values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

 Add a new tuple to student with tot_creds set to null

insert into student

values ('3003', 'Green', 'Finance', null);

©Jan-20 Christopher W. Clifton 2720

©Silberschatz, Korth and Sudarshan3.57Database System Concepts - 7th Edition

Insertion (Cont.)

 Make each student in the Music department who has earned more than 144 credit hours an instructor

in the Music department with a salary of $18,000.

insert into instructor

select ID, name, dept_name, 18000

from student

where dept_name = 'Music' and total_cred > 144;

 The select from where statement is evaluated fully before any of its results are inserted into the

relation.

Otherwise queries like

insert into table1 select * from table1

would cause problem

©Silberschatz, Korth and Sudarshan3.58Database System Concepts - 7th Edition

Updates

 Give a 5% salary raise to all instructors

update instructor

set salary = salary * 1.05

 Give a 5% salary raise to those instructors who earn less than 70000

update instructor

set salary = salary * 1.05

where salary < 70000;

 Give a 5% salary raise to instructors whose salary is less than average

update instructor

set salary = salary * 1.05

where salary < (select avg (salary)

from instructor);

©Jan-20 Christopher W. Clifton 2820

©Silberschatz, Korth and Sudarshan3.59Database System Concepts - 7th Edition

Updates (Cont.)

 Increase salaries of instructors whose salary is over $100,000 by 3%, and all others by a 5%

• Write two update statements:

update instructor

set salary = salary * 1.03

where salary > 100000;

update instructor

set salary = salary * 1.05

where salary <= 100000;

• The order is important

• Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.60Database System Concepts - 7th Edition

Case Statement for Conditional Updates

 Same query as before but with case statement

update instructor

set salary = case

when salary <= 100000 then salary * 1.05

else salary * 1.03

end

©Jan-20 Christopher W. Clifton 2920

©Silberschatz, Korth and Sudarshan3.61Database System Concepts - 7th Edition

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students

update student S

set tot_cred = (select sum(credits)

from takes, course

where takes.course_id = course.course_id and

S.ID= takes.ID.and

takes.grade <> 'F' and

takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course

 Instead of sum(credits), use:

case

when sum(credits) is not null then sum(credits)

else 0

end

