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Query Processing

• Process overview
– Parse to relational algebra

– Transform to optimized query plan

– Evaluate steps in plan on the data

• Cost measures
– Goal: reduce disk blocks read

– Alternate view: Number of tuples 
processed, cost of operation

• Pipelined processing

• Processing individual operations
– Algorithms

– Use of indexes

• Query transformation
– Legal transformations to equivalent 

queries

– “Always good” transformations

• Cost estimation
– Expected number of tuples 

processed

– Cost of operation

– Cost of plan

• Putting it all together:  Query 
Optimizer
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title

starName=name

StarsIn       name             

birthdate LIKE ‘%1960’

MovieStar

Logical Query Plan
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Selection Operation

 File scan

 Algorithm A1 (linear search).  Scan each file block and test all records to see whether they 
satisfy the selection condition.

• Cost estimate = br block transfers + 1 seek

 br denotes number of blocks containing records from relation r

• If selection is on a key attribute, can stop on finding record

 cost = (br /2) block transfers + 1 seek

• Linear search can be applied regardless of 

 selection condition or

 ordering of records in the file, or 

 availability of indices

 Note: binary search generally does not make sense since data is not stored consecutively

• except when there is an index available, 

• and binary search requires more seeks than index search
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Selections Using Indices

 Index scan – search algorithms that use an index

• selection condition must be on search-key of index.

 A2 (clustering index, equality on key).  Retrieve a single record that satisfies the 

corresponding equality condition  

• Cost = (hi + 1) * (tT + tS)

 A3 (clustering index, equality on nonkey) Retrieve multiple records. 

• Records will be on consecutive blocks

 Let b = number of blocks containing matching records

• Cost = hi * (tT + tS) + tS + tT * b
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Selections Using Indices

 A4 (secondary index, equality on key/non-key).

• Retrieve a single record if the search-key is a candidate key

 Cost = (hi + 1) * (tT + tS)

• Retrieve multiple records if search-key is not a candidate key

 each of n matching records may be on a different block  

 Cost =  (hi + n) * (tT + tS)

• Can be very expensive!
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Selections Involving Comparisons

 Can implement selections of the form AV (r) or A  V(r) by using

• a linear file scan,

• or by using indices in the following ways:

 A5 (clustering index, comparison). (Relation is sorted on A)

 For A  V(r) use index to find first tuple  v and scan relation sequentially  from 
there

 For AV (r) just scan relation sequentially till first tuple > v; do not use index

 A6 (clustering index, comparison). 

 For A  V(r) use index to find first index entry  v and scan index sequentially  
from there, to find pointers to records.

 For AV (r) just scan leaf pages of index finding pointers to records, till first entry 
> v

 In either case, retrieve records that are pointed to

 requires an I/O per record; Linear file scan may be cheaper!
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Implementation of Complex Selections

 Conjunction:  1 2. . . n(r)  

 A7 (conjunctive selection using one index).

• Select a combination of i and algorithms A1 through A7 that results in the least 
cost for i (r).

• Test other conditions on tuple after fetching it into memory buffer.

 A8 (conjunctive selection using composite index).  

• Use appropriate composite (multiple-key) index if available.

 A9 (conjunctive selection by intersection of identifiers).

• Requires indices with record pointers. 

• Use corresponding index for each condition, and take intersection of all the 
obtained sets of record pointers. 

• Then fetch records from file

• If some conditions do not have appropriate indices, apply test in memory.
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Algorithms for Complex Selections

 Disjunction:1 2 . . . n (r). 

 A10 (disjunctive selection by union of identifiers). 

• Applicable if all conditions have available indices.  

 Otherwise use linear scan.

• Use corresponding index for each condition, and take union of all the obtained sets 

of record pointers. 

• Then fetch records from file

 Negation:  (r)

• Use linear scan on file

• If very few records satisfy , and an index is applicable to 

 Find satisfying records using index and fetch from file
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Sorting

 We may build an index on the relation, and then use the index to read the relation in 

sorted order.  May lead to one disk block access for each tuple.

 For relations that fit in memory, techniques like quicksort can be used.  

• For relations that don’t fit in memory, external sort-merge is a good choice. 
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Example: External Sorting Using Sort-Merge

g

a   

d   31

c    33

b   14

e   16

r   16

d   21

m    3

p     2

d     7

a   14

a    14

a    19

b    14

c    33

d     7

d    21

d    31

e    16

g    24

m    3

p     2

r    16

a    19

b    14

c    33

d    31

e    16

g    24

a    14

d     7

d    21

m    3

p     2

r    16

a   19

d   31

g   24

b   14

c   33

e   16

d   21

m    3

r    16

a    14

d     7

p     2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24

19

©Silberschatz, Korth and Sudarshan1.53Database System Concepts - 7th Edition

External Sort-Merge

Let M denote memory size (in pages). 

1.  Create sorted runs.  Let i be 0 initially. 

Repeatedly do the following till the end of the relation:

(a)  Read M blocks of relation into memory

(b)  Sort the in-memory blocks

(c)  Write sorted data to run Ri; increment i.

Let the final value of i be N

2.  Merge the runs (next slide)…..
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External Sort-Merge (Cont.)

2.    Merge the runs (N-way merge). We assume (for now) that N < M. 

1. Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read 

the first block of each run into its buffer page

2.    repeat

1. Select the first record (in sort order) among all buffer pages

2. Write the record to the output buffer.  If the output buffer is full write it to disk.

3. Delete the record from its input buffer page.

If the buffer page becomes empty then

read the next block (if any) of the run into the buffer. 

3. until all input buffer pages are empty:
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External Sort-Merge (Cont.)

 If N  M, several merge passes are required.

• In each pass, contiguous groups of M - 1 runs are merged. 

• A pass reduces the number of runs by a factor of M -1, and creates runs longer by 

the same factor. 

 E.g.  If M=11, and there are 90 runs, one pass reduces the number of runs to 9, 

each 10 times the size of the initial runs

• Repeated passes are performed till all runs have been merged into one.
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External Merge Sort (Cont.)

 Cost analysis:

• 1  block per run leads to too many seeks during merge

 Instead use bb buffer blocks per run

 read/write bb blocks at a time

 Can merge M/bb–1 runs in one pass

• Total number of merge passes required: log M/bb–1(br/M).

• Block transfers for initial run creation as well as in each pass is 2br

 for final pass, we don’t count write cost 

• we ignore final write cost for all operations since the output of an operation 
may be sent to the parent operation without being written to disk

 Thus total number of block transfers for external sorting:
br ( 2 log M/bb–1 (br / M) + 1) 

• Seeks: next slide
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External Merge Sort (Cont.)

 Cost of seeks

• During run generation: one seek to read each run and one seek to write each run

 2 br / M

• During the merge phase

 Need 2 br / bb seeks for each merge pass 

• except the final one which does not require a write

 Total number of seeks:

2 br / M + br / bb (2 logM/bb–1(br / M) -1)
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Join Operation

 Several different algorithms to implement joins

• Nested-loop join

• Block nested-loop join

• Indexed nested-loop join

• Merge-join

• Hash-join

 Choice based on cost estimate

 Examples use the following information

• Number of records of student:  5,000     takes: 10,000

• Number of blocks of   student:     100     takes:      400
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Nested-Loop Join

 To compute the theta join  r⨝  s

for each tuple tr in r do begin

for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join condition 

if they do, add tr • ts to the result.

end

end

 r is called the outer relation and s the inner relation of the join.

 Requires no indices and can be used with any kind of join condition.

 Expensive since it examines every pair of tuples in the two relations. 
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Nested-Loop Join (Cont.)

 In the worst case, if there is enough memory only to hold one block of each relation, the 
estimated cost is 

nr  bs + br block transfers, plus  nr + br seeks

 If the smaller relation fits entirely in memory, use that as the inner relation.

• Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is

• with student as outer relation:

 5000  400 + 100 = 2,000,100 block transfers,

 5000 + 100 = 5100 seeks 

• with takes as the outer relation 

 10000  100 + 400 = 1,000,400 block transfers and 10,400 seeks

 If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block 
transfers.

 Block nested-loops algorithm (next slide) is preferable.
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Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner relation is paired with every 

block of outer relation.

for each block Br of r do begin

for each block Bs of s do begin

for each tuple tr in Br do begin

for each tuple ts in Bs do begin

Check if (tr,ts) satisfy the join condition 

if they do, add tr • ts to the result.

end

end

end

end
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Indexed Nested-Loop Join

 Index lookups can replace file scans if

• join is an equi-join or natural join and

• an index is available on the inner relation’s join attribute

 Can construct an index just to compute a join.

 For each tuple tr in the outer relation r, use the index to look up tuples in s that satisfy 
the join condition with tuple tr.

 Worst case:  buffer has space for only one page of r, and, for each tuple in r, we 
perform an index lookup on s.

 Cost of the join:  br (tT + tS) + nr  c

• Where c is the cost of traversing index and fetching all matching s tuples for one 
tuple or r

• c can be estimated as cost of a single selection on s using the join condition.

 If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.
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Merge-Join

1.   Sort both relations on their join attribute (if not already sorted on the join 
attributes).

2.   Merge the sorted relations to join them

1.   Join step is similar to the merge stage of the sort-merge algorithm.  

2.   Main difference is handling of duplicate values in join attribute —
every pair with same value on join attribute must be matched

3.   Detailed algorithm in book
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Merge-Join (Cont.)

 Can be used only for equi-joins and natural joins

 Each block needs to be read only once (assuming all tuples for any given value of the 
join attributes fit in memory

 Thus the cost of merge join is: 
br + bs block transfers  + br / bb + bs / bb seeks

+ the cost of sorting if relations are unsorted.

 hybrid merge-join: If one relation is sorted, and the other has a secondary B+-tree 
index on the join attribute

• Merge the sorted relation with the leaf entries of the B+-tree . 

• Sort the result on the addresses of the unsorted relation’s tuples

• Scan the unsorted relation in physical address order and merge with previous 
result, to replace addresses by the actual tuples

 Sequential scan more efficient than random lookup
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Hash-Join

 Applicable for equi-joins and natural joins.

 A hash function h is used to partition tuples of both relations 

 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the common attributes 

of r and s used in the natural join. 

• r0, r1, . . ., rn denote partitions of r tuples

 Each tuple tr  r is put in partition ri where i = h(tr [JoinAttrs]).

• r0,, r1. . ., rn denotes partitions of s tuples

 Each tuple ts s is put in partition si, where i = h(ts [JoinAttrs]).

 Note: In book,  Figure 12.10 ri is denoted as Hri, si is denoted as Hsi and

n is denoted as nh. 
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Hash-Join (Cont.)
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Hash-Join Algorithm

The hash-join of r and s is computed as follows.

1. Partition the relation s using hashing function h.  When partitioning a relation, one 

block of memory is reserved as the output buffer for each partition.

2. Partition r similarly.

3. For each i:

(a) Load si into memory and build an in-memory hash index on it using the join 

attribute.  This hash index uses a different hash function than the earlier one h.

(b) Read the tuples in ri from the disk one by one.  For each tuple tr locate each 

matching tuple ts in si using the in-memory hash index.  Output the concatenation of 

their attributes.

Relation s is called the build input and  r is called the probe input.
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Hash-Join algorithm (Cont.)

 The value n and the hash function h is chosen such that each si should fit in memory.

• Typically n is chosen as bs/M * f  where f is a “fudge factor”, typically around 1.2

• The probe relation partitions si need not fit in memory

 Recursive partitioning required if number of partitions n is greater than number of 

pages M of memory.

• instead of partitioning n ways, use M – 1 partitions for s

• Further partition the M – 1 partitions using a different hash function

• Use same partitioning method on r

• Rarely required: e.g., with block size of 4 KB, recursive partitioning not needed for 

relations of < 1GB with memory size of 2MB, or relations of < 36 GB with memory 

of 12 MB
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Handling of Overflows

 Partitioning is said to be skewed if some partitions have significantly more tuples than 

some others

 Hash-table overflow occurs in partition si if si does not fit in memory.  Reasons could be

• Many tuples in s with same value for join attributes

• Bad hash function

 Overflow resolution can be done in build phase

• Partition si is further partitioned using different hash function. 

• Partition ri must be similarly partitioned.

 Overflow avoidance performs partitioning carefully to avoid overflows during build phase

• E.g., partition build relation into many partitions, then combine them

 Both approaches fail with large numbers of duplicates

• Fallback option: use block nested loops join on overflowed  partitions
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Cost of Hash-Join

 If recursive partitioning is not required: cost of hash join is

3(br + bs) +4  nh block transfers +

2( br / bb + bs / bb)  seeks

 If recursive partitioning required:

• number of passes required for partitioning build relation s to less than M blocks per 

partition is logM/bb–1(bs/M)

• best to choose the smaller relation as the build relation.

• Total cost estimate is: 

2(br + bs) logM/bb–1(bs/M) + br + bs block transfers + 

2(br / bb + bs / bb) logM/bb–1(bs/M)  seeks

 If the entire build input can be kept in main memory no partitioning is required

• Cost estimate goes down to br + bs.

©Silberschatz, Korth and Sudarshan1.77Database System Concepts - 7th Edition

Complex Joins

 Join with a conjunctive condition:

r ⨝ 1  2...   n s

• Either use nested loops/block nested loops, or

• Compute the result of one of the simpler joins r ⨝ i s

 final result comprises those tuples in the intermediate result that satisfy the 

remaining conditions

1  . . .  i –1  i +1  . . .  n

 Join with a disjunctive condition

r ⨝ 1  2 ...  n
s 

• Either use nested loops/block nested loops, or

• Compute as the union of the records in individual joins r ⨝ i
s:

(r ⨝ 1
s)  (r ⨝ 2

s)  . . .  (r ⨝ n
s) 
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Other Operations

 Duplicate elimination can be implemented via hashing or sorting.

• On sorting duplicates will come adjacent to each other, and all but one set of 

duplicates can be deleted.  

• Optimization: duplicates can be deleted during run generation as well as at 

intermediate merge steps in external sort-merge.

• Hashing is similar – duplicates will come into the same bucket.

 Projection:

• perform projection on each tuple 

• followed by duplicate elimination. 
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Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate elimination.

• Sorting or hashing can be used to bring tuples in the same group together, and 

then the aggregate functions can be applied on each group.

• Optimization: partial aggregation

 combine tuples in the same group during run generation and intermediate 

merges, by computing partial aggregate values

 For count, min, max, sum: keep aggregate values on tuples found so far in the 

group.  

• When combining partial aggregate for count, add up the partial aggregates

 For avg, keep sum and count, and divide sum by count at the end
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Other Operations : Set Operations

 Set operations (,  and ):  can either use variant of merge-join after sorting, or 
variant of hash-join.

 E.g., Set operations using hashing:

1.   Partition both relations using the same hash function

2.   Process each partition i as follows.  

1. Using a different hashing function, build an in-memory hash index on ri.

2. Process si as follows

• r  s:  

1. Add tuples in si to the hash index if they are not already in it.  

2. At end of si add the tuples in the hash index to the result.
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Other Operations : Set Operations

 E.g., Set operations using hashing:

1.   as before partition r and s, 

2. as before, process each partition i as follows

1. build a hash index on ri

2. Process si as follows

• r  s: 

1. output tuples in si to the result if they are already there in the hash index

• r – s:

1. for each tuple in si, if it is there in the hash index, delete it from the index. 

2. At end of si add remaining tuples in the hash index to the result. 
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Other Operations : Outer Join

 Outer join can be computed either as 

• A join followed by addition of null-padded non-participating tuples.

• by modifying the join algorithms.

 Modifying merge join to compute r ⟕ s

• In r ⟕ s, non participating tuples are those in r – R(r ⨝ s)

• Modify merge-join to compute r ⟕ s:  

 During merging, for every tuple tr from r that do not match any tuple in s, output 

tr padded with nulls.

• Right outer-join and full outer-join can be computed similarly.
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Cache Conscious Algorithms

 Goal: minimize cache misses, make best use of data fetched into the cache as part of a 
cache line

 For sorting:

• Use runs that are as large as L3 cache (a few megabytes) to avoid cache misses 
during sorting of a run

• Then merge runs as usual in merge-sort

 For hash-join

• First create partitions such that build+probe partitions fit in memory

• Then subpartition further s.t. build subpartition+index fits in L3 cache

 Speeds up probe phase significantly by avoiding cache misses

 Lay out attributes of tuples to maximize cache usage

• Attributes that are often accessed together should be stored adjacent to each other

 Use multiple threads for parallel query processing

• Cache misses leads to stall of one thread, but others can proceed


