
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Query Processing

Prof. Chris Clifton

5 October 2021

Query Processing: Goal

• Go through tables to find
the right tuples

– Efficiently

• Challenges

– Selection
• Use of indices

– Projection
• Duplicate elimination

– Cartesian Product
• Ouch

• |R1| x |R2| tuples…

– Join processing
• Combining Cartesian product

and selection can be much
more efficient

• Set operations

– Union, Intersection,
Difference

©Jan-21 Christopher W. Clifton 220

Example

Select B,D

From R,S

Where R.A = “c” S.E = 2 R.C=S.C

R A B C S C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

Answer B D

2 x

©Jan-21 Christopher W. Clifton 320

How do we execute query?

- Do Cartesian product

- Select tuples

- Do projection
One idea

RXS R.A R.B R.C S.C S.D S.E

a 1 10 10 x 2

a 1 10 20 y 2

.

.

C 2 10 10 x 2
.
.

Bingo!

Got one...

©Jan-21 Christopher W. Clifton 420

Relational Algebra - can be used to

describe plans...

Ex: Plan I B,D

sR.A=“c” S.E=2 R.C=S.C

X

R S

OR: B,D [sR.A=“c” S.E=2 R.C = S.C (RXS)]

Another idea:

 B,D

sR.A = “c” sS.E = 2

R S

Plan II

natural join

©Jan-21 Christopher W. Clifton 520

R S

A B C s (R) s(S) C D E

a 1 10 A B C C D E 10 x 2

b 1 20 c 2 10 10 x 2 20 y 2

c 2 10 20 y 2 30 z 2

d 2 35 30 z 2 40 x 1

e 3 45 50 y 3

Plan III

Use R.A and S.C Indexes

(1) Use R.A index to select R tuples with R.A = “c”

(2) For each R.C value found, use S.C index to find

matching tuples

(3) Eliminate S tuples S.E 2

(4) Join matching R,S tuples, project

B,D attributes and place in result

©Jan-21 Christopher W. Clifton 620

R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

=“c”

<c,2,10> <10,x,2>

check=2?

output: <2,x>

next tuple:
<c,7,15>

©Silberschatz, Korth and Sudarshan1.12Database System Concepts - 7th Edition

Chapter 15: Query Processing

 Overview

 Measures of Query Cost

 Selection Operation

 Sorting

 Join Operation

 Other Operations

 Evaluation of Expressions

©Jan-21 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan1.13Database System Concepts - 7th Edition

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

©Silberschatz, Korth and Sudarshan1.14Database System Concepts - 7th Edition

Basic Steps in Query Processing (Cont.)

 Parsing and translation

• translate the query into its internal form. This is then translated into relational

algebra.

• Parser checks syntax, verifies relations

 Evaluation

• The query-execution engine takes a query-evaluation plan, executes that plan, and

returns the answers to the query.

©Jan-21 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan1.15Database System Concepts - 7th Edition

Basic Steps in Query Processing: Optimization

 A relational algebra expression may have many equivalent expressions

• E.g., ssalary75000(salary(instructor)) is equivalent to

salary(ssalary75000(instructor))

 Each relational algebra operation can be evaluated using one of several different

algorithms

• Correspondingly, a relational-algebra expression can be evaluated in many ways.

 Annotated expression specifying detailed evaluation strategy is called an evaluation-

plan. E.g.,:

• Use an index on salary to find instructors with salary < 75000,

• Or perform complete relation scan and discard instructors with salary 75000

©Silberschatz, Korth and Sudarshan1.16Database System Concepts - 7th Edition

Basic Steps: Optimization (Cont.)

 Query Optimization: Amongst all equivalent evaluation plans choose the one with
lowest cost.

• Cost is estimated using statistical information from the
database catalog

 e.g.. number of tuples in each relation, size of tuples, etc.

 In this chapter we study

• How to measure query costs

• Algorithms for evaluating relational algebra operations

• How to combine algorithms for individual operations in order to evaluate a complete
expression

 In Chapter 16

• We study how to optimize queries, that is, how to find an evaluation plan with
lowest estimated cost

©Jan-21 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 7th Edition

Basic Steps in Query Processing

1. Parsing and translation – use standard compiler techniques (CS35200)

2. Optimization – choose from different ways of getting the same result

3. Evaluation – Today…

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

©Jan-21 Christopher W. Clifton 1020

Example: SQL query

SELECT title

FROM StarsIn

WHERE starName IN (

SELECT name

FROM MovieStar

WHERE birthdate LIKE ‘%1960’

);

(Find the movies with stars born in 1960)

<Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Tuple> IN <Query>

title StarsIn <Attribute> (<Query>)

starName <SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate ‘%1960’

Example: Parse Tree

©Jan-21 Christopher W. Clifton 1120

title

s

StarsIn <condition>

<tuple> IN name

<attribute> sbirthdate LIKE ‘%1960’

starName MovieStar

Example: Generating Relational Algebra

title

sstarName=name

StarsIn name

sbirthdate LIKE ‘%1960’

MovieStar

Example: Logical Query Plan

©Jan-21 Christopher W. Clifton 1220

title

starName=name

StarsIn name

sbirthdate LIKE ‘%1960’

MovieStar

Question:
Push project to

StarsIn?

Example: Improved Logical Query Plan

Example: Estimate Result Sizes

Need expected size

StarsIn

MovieStar

s

©Jan-21 Christopher W. Clifton 1320

Example: One Physical Plan

Parameters: join order,
memory size, project attributes,...

Hash join

SEQ scan index scan Parameters:
Select Condition,...

StarsIn MovieStar

Example: Estimate costs

L.Q.P

P1 P2 …. Pn

C1 C2 …. Cn

Pick best!

©Jan-21 Christopher W. Clifton 1420

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

©Silberschatz, Korth and Sudarshan1.29Database System Concepts - 7th Edition

Evaluation of Expressions

 Alternatives for evaluating an entire expression tree

• Materialization: generate results of an expression whose inputs are relations or

are already computed, materialize (store) it on disk. Repeat.

• Pipelining: pass on tuples to parent operations even as an operation is being

executed

 We study above alternatives in more detail

©Jan-21 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan1.30Database System Concepts - 7th Edition

Materialization

 Materialized evaluation: evaluate one operation at a time, starting at the lowest-level.

Use intermediate results materialized into temporary relations to evaluate next-level

operations.

 E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute the projection on

name.

)("Watson" departmentbuilding s

©Silberschatz, Korth and Sudarshan1.31Database System Concepts - 7th Edition

Materialization (Cont.)

 Materialized evaluation is always applicable

 Cost of writing results to disk and reading them back can be quite high

• Our cost formulas for operations ignore cost of writing results to disk, so

 Overall cost = Sum of costs of individual operations +

cost of writing intermediate results to disk

 Double buffering: use two output buffers for each operation, when one is full write it to

disk while the other is getting filled

• Allows overlap of disk writes with computation and reduces execution time

©Jan-21 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan1.32Database System Concepts - 7th Edition

Pipelining

 Pipelined evaluation: evaluate several operations simultaneously, passing the results
of one operation on to the next.

 E.g., in previous expression tree, don’t store result of

• instead, pass tuples directly to the join.. Similarly, don’t store result of join, pass
tuples directly to projection.

 Much cheaper than materialization: no need to store a temporary relation to disk.

 Pipelining may not always be possible – e.g., sort, hash-join.

 For pipelining to be effective, use evaluation algorithms that generate output tuples
even as tuples are received for inputs to the operation.

 Pipelines can be executed in two ways: demand driven and producer driven

)("Watson" departmentbuildings

©Silberschatz, Korth and Sudarshan1.33Database System Concepts - 7th Edition

Pipelining (Cont.)

 In demand driven or lazy evaluation

• system repeatedly requests next tuple from top level operation

• Each operation requests next tuple from children operations as required, in order to
output its next tuple

• In between calls, operation has to maintain “state” so it knows what to return next

 In producer-driven or eager pipelining

• Operators produce tuples eagerly and pass them up to their parents

 Buffer maintained between operators, child puts tuples in buffer, parent removes
tuples from buffer

 if buffer is full, child waits till there is space in the buffer, and then generates more
tuples

• System schedules operations that have space in output buffer and can process more
input tuples

 Alternative name: pull and push models of pipelining

©Jan-21 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan1.34Database System Concepts - 7th Edition

Pipelining (Cont.)

 Implementation of demand-driven pipelining

• Each operation is implemented as an iterator implementing the following
operations

 open()

• E.g., file scan: initialize file scan

 state: pointer to beginning of file

• E.g., merge join: sort relations;

 state: pointers to beginning of sorted relations

 next()

• E.g., for file scan: Output next tuple, and advance and store file pointer

• E.g., for merge join: continue with merge from earlier state till next output
tuple is found. Save pointers as iterator state.

 close()

©Silberschatz, Korth and Sudarshan1.35Database System Concepts - 7th Edition

Blocking Operations

 Blocking operations: cannot generate any output until all input is consumed

• E.g., sorting, aggregation, …

 But can often consume inputs from a pipeline, or produce outputs to a pipeline

 Key idea: blocking operations often have two suboperations

• E.g., for sort: run generation and merge

• For hash join: partitioning and build-probe

 Treat them as separate operations

©Jan-21 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan1.36Database System Concepts - 7th Edition

Pipeline Stages

 Pipeline stages:

• All operations in a stage run concurrently

• A stage can start only after preceding stages have completed execution

©Silberschatz, Korth and Sudarshan1.37Database System Concepts - 7th Edition

Pipelining for Continuous-Stream Data

 Data streams

• Data entering database in a continuous manner

• E.g., Sensor networks, user clicks, …

 Continuous queries

• Results get updated as streaming data enters the database

• Aggregation on windows is often used

 E.g., tumbling windows divide time into units, e.g., hours, minutes

 Need to use pipelined processing algorithms

• Punctuations used to infer when all data for a window has been received

©Jan-21 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan1.38Database System Concepts - 7th Edition

Measures of Query Cost

 Many factors contribute to time cost

• disk access, CPU, and network communication

 Cost can be measured based on

• response time, i.e. total elapsed time for answering query, or

• total resource consumption

 We use total resource consumption as cost metric

• Response time harder to estimate, and minimizing resource consumption is a good
idea in a shared database

 We ignore CPU costs for simplicity

• Real systems do take CPU cost into account

• Network costs must be considered for parallel systems

 We describe how estimate the cost of each operation

• We do not include cost to writing output to disk

©Silberschatz, Korth and Sudarshan1.39Database System Concepts - 7th Edition

Measures of Query Cost

 Disk cost can be estimated as:

• Number of seeks * average-seek-cost

• Number of blocks read * average-block-read-cost

• Number of blocks written * average-block-write-cost

 For simplicity we just use the number of block transfers from disk and the number of
seeks as the cost measures

• tT – time to transfer one block

 Assuming for simplicity that write cost is same as read cost

• tS – time for one seek

• Cost for b block transfers plus S seeks
b * tT + S * tS

 tS and tT depend on where data is stored; with 4 KB blocks:

• High end magnetic disk: tS = 4 msec and tT =0.1 msec

• SSD: tS = 20-90 microsec and tT = 2-10 microsec for 4KB

©Jan-21 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan1.40Database System Concepts - 7th Edition

Measures of Query Cost (Cont.)

 Required data may be buffer resident already, avoiding disk I/O

• But hard to take into account for cost estimation

 Several algorithms can reduce disk IO by using extra buffer space

• Amount of real memory available to buffer depends on other concurrent queries

and OS processes, known only during execution

 Worst case estimates assume that no data is initially in buffer and only the minimum

amount of memory needed for the operation is available

• But more optimistic estimates are used in practice

