
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Query Processing

Prof. Chris Clifton

5 October 2021

Query Processing: Goal

• Go through tables to find
the right tuples

– Efficiently

• Challenges

– Selection
• Use of indices

– Projection
• Duplicate elimination

– Cartesian Product
• Ouch

• |R1| x |R2| tuples…

– Join processing
• Combining Cartesian product

and selection can be much
more efficient

• Set operations

– Union, Intersection,
Difference

©Jan-21 Christopher W. Clifton 220

Example

Select B,D

From R,S

Where R.A = “c”  S.E = 2  R.C=S.C

R A B C S C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

Answer B D

2 x

©Jan-21 Christopher W. Clifton 320

How do we execute query?

- Do Cartesian product

- Select tuples

- Do projection
One idea

RXS R.A R.B R.C S.C S.D S.E

a 1 10 10 x 2

a 1 10 20 y 2

.

.

C 2 10 10 x 2
.
.

Bingo!

Got one...

©Jan-21 Christopher W. Clifton 420

Relational Algebra - can be used to

describe plans...

Ex: Plan I B,D

sR.A=“c” S.E=2  R.C=S.C

X

R S

OR: B,D [sR.A=“c” S.E=2  R.C = S.C (RXS)]

Another idea:

 B,D

sR.A = “c” sS.E = 2

R S

Plan II

natural join

©Jan-21 Christopher W. Clifton 520

R S

A B C s (R) s(S) C D E

a 1 10 A B C C D E 10 x 2

b 1 20 c 2 10 10 x 2 20 y 2

c 2 10 20 y 2 30 z 2

d 2 35 30 z 2 40 x 1

e 3 45 50 y 3

Plan III

Use R.A and S.C Indexes

(1) Use R.A index to select R tuples with R.A = “c”

(2) For each R.C value found, use S.C index to find

matching tuples

(3) Eliminate S tuples S.E  2

(4) Join matching R,S tuples, project

B,D attributes and place in result

©Jan-21 Christopher W. Clifton 620

R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

=“c”

<c,2,10> <10,x,2>

check=2?

output: <2,x>

next tuple:
<c,7,15>

©Silberschatz, Korth and Sudarshan1.12Database System Concepts - 7th Edition

Chapter 15: Query Processing

 Overview

 Measures of Query Cost

 Selection Operation

 Sorting

 Join Operation

 Other Operations

 Evaluation of Expressions

©Jan-21 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan1.13Database System Concepts - 7th Edition

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

©Silberschatz, Korth and Sudarshan1.14Database System Concepts - 7th Edition

Basic Steps in Query Processing (Cont.)

 Parsing and translation

• translate the query into its internal form. This is then translated into relational

algebra.

• Parser checks syntax, verifies relations

 Evaluation

• The query-execution engine takes a query-evaluation plan, executes that plan, and

returns the answers to the query.

©Jan-21 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan1.15Database System Concepts - 7th Edition

Basic Steps in Query Processing: Optimization

 A relational algebra expression may have many equivalent expressions

• E.g., ssalary75000(salary(instructor)) is equivalent to

salary(ssalary75000(instructor))

 Each relational algebra operation can be evaluated using one of several different

algorithms

• Correspondingly, a relational-algebra expression can be evaluated in many ways.

 Annotated expression specifying detailed evaluation strategy is called an evaluation-

plan. E.g.,:

• Use an index on salary to find instructors with salary < 75000,

• Or perform complete relation scan and discard instructors with salary  75000

©Silberschatz, Korth and Sudarshan1.16Database System Concepts - 7th Edition

Basic Steps: Optimization (Cont.)

 Query Optimization: Amongst all equivalent evaluation plans choose the one with
lowest cost.

• Cost is estimated using statistical information from the
database catalog

 e.g.. number of tuples in each relation, size of tuples, etc.

 In this chapter we study

• How to measure query costs

• Algorithms for evaluating relational algebra operations

• How to combine algorithms for individual operations in order to evaluate a complete
expression

 In Chapter 16

• We study how to optimize queries, that is, how to find an evaluation plan with
lowest estimated cost

©Jan-21 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 7th Edition

Basic Steps in Query Processing

1. Parsing and translation – use standard compiler techniques (CS35200)

2. Optimization – choose from different ways of getting the same result

3. Evaluation – Today…

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

©Jan-21 Christopher W. Clifton 1020

Example: SQL query

SELECT title

FROM StarsIn

WHERE starName IN (

SELECT name

FROM MovieStar

WHERE birthdate LIKE ‘%1960’

);

(Find the movies with stars born in 1960)

<Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Tuple> IN <Query>

title StarsIn <Attribute> (<Query>)

starName <SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate ‘%1960’

Example: Parse Tree

©Jan-21 Christopher W. Clifton 1120

title

s

StarsIn <condition>

<tuple> IN name

<attribute> sbirthdate LIKE ‘%1960’

starName MovieStar

Example: Generating Relational Algebra

title

sstarName=name

StarsIn name

sbirthdate LIKE ‘%1960’

MovieStar



Example: Logical Query Plan

©Jan-21 Christopher W. Clifton 1220

title

starName=name

StarsIn name

sbirthdate LIKE ‘%1960’

MovieStar

Question:
Push project to

StarsIn?

Example: Improved Logical Query Plan

Example: Estimate Result Sizes

Need expected size

StarsIn

MovieStar



s

©Jan-21 Christopher W. Clifton 1320

Example: One Physical Plan

Parameters: join order,
memory size, project attributes,...

Hash join

SEQ scan index scan Parameters:
Select Condition,...

StarsIn MovieStar

Example: Estimate costs

L.Q.P

P1 P2 …. Pn

C1 C2 …. Cn

Pick best!

©Jan-21 Christopher W. Clifton 1420

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

©Silberschatz, Korth and Sudarshan1.29Database System Concepts - 7th Edition

Evaluation of Expressions

 Alternatives for evaluating an entire expression tree

• Materialization: generate results of an expression whose inputs are relations or

are already computed, materialize (store) it on disk. Repeat.

• Pipelining: pass on tuples to parent operations even as an operation is being

executed

 We study above alternatives in more detail

©Jan-21 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan1.30Database System Concepts - 7th Edition

Materialization

 Materialized evaluation: evaluate one operation at a time, starting at the lowest-level.

Use intermediate results materialized into temporary relations to evaluate next-level

operations.

 E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute the projection on

name.

)("Watson" departmentbuilding s

©Silberschatz, Korth and Sudarshan1.31Database System Concepts - 7th Edition

Materialization (Cont.)

 Materialized evaluation is always applicable

 Cost of writing results to disk and reading them back can be quite high

• Our cost formulas for operations ignore cost of writing results to disk, so

 Overall cost = Sum of costs of individual operations +

cost of writing intermediate results to disk

 Double buffering: use two output buffers for each operation, when one is full write it to

disk while the other is getting filled

• Allows overlap of disk writes with computation and reduces execution time

©Jan-21 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan1.32Database System Concepts - 7th Edition

Pipelining

 Pipelined evaluation: evaluate several operations simultaneously, passing the results
of one operation on to the next.

 E.g., in previous expression tree, don’t store result of

• instead, pass tuples directly to the join.. Similarly, don’t store result of join, pass
tuples directly to projection.

 Much cheaper than materialization: no need to store a temporary relation to disk.

 Pipelining may not always be possible – e.g., sort, hash-join.

 For pipelining to be effective, use evaluation algorithms that generate output tuples
even as tuples are received for inputs to the operation.

 Pipelines can be executed in two ways: demand driven and producer driven

)("Watson" departmentbuildings

©Silberschatz, Korth and Sudarshan1.33Database System Concepts - 7th Edition

Pipelining (Cont.)

 In demand driven or lazy evaluation

• system repeatedly requests next tuple from top level operation

• Each operation requests next tuple from children operations as required, in order to
output its next tuple

• In between calls, operation has to maintain “state” so it knows what to return next

 In producer-driven or eager pipelining

• Operators produce tuples eagerly and pass them up to their parents

 Buffer maintained between operators, child puts tuples in buffer, parent removes
tuples from buffer

 if buffer is full, child waits till there is space in the buffer, and then generates more
tuples

• System schedules operations that have space in output buffer and can process more
input tuples

 Alternative name: pull and push models of pipelining

©Jan-21 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan1.34Database System Concepts - 7th Edition

Pipelining (Cont.)

 Implementation of demand-driven pipelining

• Each operation is implemented as an iterator implementing the following
operations

 open()

• E.g., file scan: initialize file scan

 state: pointer to beginning of file

• E.g., merge join: sort relations;

 state: pointers to beginning of sorted relations

 next()

• E.g., for file scan: Output next tuple, and advance and store file pointer

• E.g., for merge join: continue with merge from earlier state till next output
tuple is found. Save pointers as iterator state.

 close()

©Silberschatz, Korth and Sudarshan1.35Database System Concepts - 7th Edition

Blocking Operations

 Blocking operations: cannot generate any output until all input is consumed

• E.g., sorting, aggregation, …

 But can often consume inputs from a pipeline, or produce outputs to a pipeline

 Key idea: blocking operations often have two suboperations

• E.g., for sort: run generation and merge

• For hash join: partitioning and build-probe

 Treat them as separate operations

©Jan-21 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan1.36Database System Concepts - 7th Edition

Pipeline Stages

 Pipeline stages:

• All operations in a stage run concurrently

• A stage can start only after preceding stages have completed execution

©Silberschatz, Korth and Sudarshan1.37Database System Concepts - 7th Edition

Pipelining for Continuous-Stream Data

 Data streams

• Data entering database in a continuous manner

• E.g., Sensor networks, user clicks, …

 Continuous queries

• Results get updated as streaming data enters the database

• Aggregation on windows is often used

 E.g., tumbling windows divide time into units, e.g., hours, minutes

 Need to use pipelined processing algorithms

• Punctuations used to infer when all data for a window has been received

©Jan-21 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan1.38Database System Concepts - 7th Edition

Measures of Query Cost

 Many factors contribute to time cost

• disk access, CPU, and network communication

 Cost can be measured based on

• response time, i.e. total elapsed time for answering query, or

• total resource consumption

 We use total resource consumption as cost metric

• Response time harder to estimate, and minimizing resource consumption is a good
idea in a shared database

 We ignore CPU costs for simplicity

• Real systems do take CPU cost into account

• Network costs must be considered for parallel systems

 We describe how estimate the cost of each operation

• We do not include cost to writing output to disk

©Silberschatz, Korth and Sudarshan1.39Database System Concepts - 7th Edition

Measures of Query Cost

 Disk cost can be estimated as:

• Number of seeks * average-seek-cost

• Number of blocks read * average-block-read-cost

• Number of blocks written * average-block-write-cost

 For simplicity we just use the number of block transfers from disk and the number of
seeks as the cost measures

• tT – time to transfer one block

 Assuming for simplicity that write cost is same as read cost

• tS – time for one seek

• Cost for b block transfers plus S seeks
b * tT + S * tS

 tS and tT depend on where data is stored; with 4 KB blocks:

• High end magnetic disk: tS = 4 msec and tT =0.1 msec

• SSD: tS = 20-90 microsec and tT = 2-10 microsec for 4KB

©Jan-21 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan1.40Database System Concepts - 7th Edition

Measures of Query Cost (Cont.)

 Required data may be buffer resident already, avoiding disk I/O

• But hard to take into account for cost estimation

 Several algorithms can reduce disk IO by using extra buffer space

• Amount of real memory available to buffer depends on other concurrent queries

and OS processes, known only during execution

 Worst case estimates assume that no data is initially in buffer and only the minimum

amount of memory needed for the operation is available

• But more optimistic estimates are used in practice

