J 7 PURDUE | sumenttcomterscons

UNIVERSITY

CS 44800: Introduction To
Relational Database Systems

Query Processing
Prof. Chris Clifton
5 October 2021

| ndiana
Genter for
Database

Systems

27
PORDUE Query Processing: Goal

Department of Computer Science

« Go through tables to find -
the right tuples

— Efficiently
« Challenges

— Join processing
« Combining Cartesian product

— Selection and selection can be much
» Use of indices more efficient
— Projection Set operations
 Duplicate elimination — Union, Intersection,
Difference

© 2021 Christopher W. Clifton

PORDYE Example
Select B,D
From R,S

Where RA=“" A SE=2A R.C=S.C

RIA|[B|C | s|C
a | 1|10 10
b | 1 | 20 / 20
——

Cec 210/ |30
d | 2 |35 40
e | 3| 45 50

Answer B | D
2 | X

OOI—‘I\JI\J\I\)FH

© 2021 Christopher W. Clifton

27
PORDYE How do we execute query?

Department of Computer Science

- Do Cartesian product

One idea - Select tuples
- Do projection

RXS R.A/RB|R.C|S.C|SD|S.E

Bingo!

o
5|
&
~

Got one...

© 2021 Christopher W. Clifton

2

PURDUE Relational Alge_bra - can be used to
describe plans...
Ex: Plan | g p

OR.A=“C’A S.E=2 A R.C=S.C

OR: Ilgp[Ora=c'As.E=2 AR C=5.c (RXS)]

PURDUE Another idea:
Plan Il D
| >
- > N natural join
Ora=«" Osg=2
R S

© 2021 Christopher W. Clifton

R S
A|B|C c (R) o(S) |C|D|E
a|l|10 A|B C|| CDIE| |10/x|2
b120~c210 10x2_20y2
c 210 20/y|2| |30|z|2
d|2 |35 300zI21 |40|x |1
e|3 45 Y 50| y|3

>
1§

a5

purRDUE Clanlll

UNIVERSITY

Department of Computer Science

Use R.A and S.C Indexes
(1) Use R.Aindex to select R tuples with R.A = “c”

(2) For each R.C value found, use S.Cindex to find
matching tuples
(3) Eliminate S tuples S.E = 2

(4) Join matching R,S tuples, project
B,D attributes and place in result

© 2021 Christopher W. Clifton

R S
A=“C" C
AB|C | _ & __ .| C|DIE
alll10 (‘ 10| x| 2
b1 |20 <c210> <1 (2 1200 y|2
d|2 35 output: <2,x> 40| x| 1
e (3 |45 50/ y|3
next tuple:
<c,7,15>

Chapter 15: Query Processing

= Qverview

= Measures of Query Cost
= Selection Operation

= Sorting

= Join Operation

= QOther Operations

= Evaluation of Expressions

Database System Concepts - 7" Edition 1.12 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

parser and relational-algebra

translator expression

o
data statistics
about data
Database System Concepts - 7" Edition 1.13 ©Silberschatz, Korth and Sudarshan

Basic Steps in Query Processing (Cont.)

= Parsing and translation

translate the query into its internal form. This is then translated into relational
algebra.

Parser checks syntax, verifies relations
= Evaluation

The query-execution engine takes a query-evaluation plan, executes that plan, and
returns the answers to the query.

Database System Concepts - 7" Edition 1.14 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Basic Steps in Query Processing: Optimization

= Arelational algebra expression may have many equivalent expressions

E.9., Gsaiary<75000(l Lsaary(iNstructor)) is equivalent to
Hsalary(Gsalary<75000(InStrUCtor))

= Each relational algebra operation can be evaluated using one of several different
algorithms

Correspondingly, a relational-algebra expression can be evaluated in many ways.

= Annotated expression specifying detailed evaluation strategy is called an evaluation-
plan. E.g.,:

Use an index on salary to find instructors with salary < 75000,
Or perform complete relation scan and discard instructors with salary > 75000

Database System Concepts - 7" Edition 1.15 ©Silberschatz, Korth and Sudarshan

Basic Steps: Optimization (Cont.)

= Query Optimization: Amongst all equivalent evaluation plans choose the one with
lowest cost.

Cost is estimated using statistical information from the
database catalog

= e.g.. number of tuples in each relation, size of tuples, etc.
= |n this chapter we study
How to measure query costs
Algorithms for evaluating relational algebra operations

How to combine algorithms for individual operations in order to evaluate a complete
expression

= |n Chapter 16

We study how to optimize queries, that is, how to find an evaluation plan with
lowest estimated cost

Database System Concepts - 7" Edition 1.16 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Basic Steps in Query Processing

1. Parsing and translation — use standard compiler techniques (CS35200)
2. Optimization — choose from different ways of getting the same result
3. Evaluation — Today...

- parser and relational-algebra
query '
translator expression

query
output

statistics
about data

Database System Concepts - 7" Edition 1.17 ©Silberschatz, Korth and Sudarshan

| SQL query

parse tree
I answer

| logical query plan @

statistics -~ 1 Pi
!

!

{(P1,C1),(P2,C2)...}

estimate costs

f

© 2021 Christopher W. Clifton

27
PORDYE Example: SQL query
SELECT title
FROM Starsin
WHERE starName IN (
SELECT name
FROM MovieStar
WHERE birthdate LIKE ‘%1960’

);

(Find the movies with stars born in 1960)

Example: Parse Tree

<Query>
|

SELECT <SelList> FROM <FromList> WHERE <Cond'\tior>\
<Attri|:‘)ute> <ReIN‘ame> <T7ple> IN ?u‘e%
title StarsIn <Attrib\ute> (<Qt/Jery>)

StarNa//VOv ’
SELECT <S?IList> FROM <?)mList> WHERE </n ition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate ‘%1960’

© 2021 Christopher W. Clifton

10

2

PURDUE

UNIVERSITY

Department of Computer Science

Example: Generating Relational Algebra

Department of Computer Science

I Ititle
O
/ \
Starsln <cond@on>
<tuple> IN [Iname
<attribute> O birthdate LIKE ‘%1960
starName MovieStar
2 |
PORDUE Example: Logical Query Plan

I Ttitle

O starName=name

|
X

PN

Starsln

Hname

O birthdate LIKE ‘%1960

MovieStar

© 2021 Christopher W. Clifton

11

UNIVERSITY

Department of Computer Science

FURDUE Example: Improved Logical Query Plan
[title
Question:
DQ_ Push project to
Sta/'\"’me"ime StarsIn?
Starsln I Iname
O birthdate LIKE ‘%1960’
MovieStar
PURDUE

Example: Estimate Result Sizes

Starsin

MovieStar

© 2021 Christopher W. Clifton

12

UNIVERSITY

Department of Computer Science

PORDYE Example: One Physical Plan
Hash join |— Parameters: join order,
memory size, project attributes,...
SEQ scan index scan| — Parameters:
‘ Select Condition,...
Starsln MovieStar
PURDUE

Example: Estimate costs

L.Q.P
P1 P2 ... Pn
| | |
C1l c2 ... Cn
I
Pick best!

© 2021 Christopher W. Clifton

13

| SQL query

parse tree
I answer

| logical query plan
: | 1P

statistics

__

{(P1,C1),(P2,C2)..}!

estimate costs

f

Evaluation of Expressions

= Alternatives for evaluating an entire expression tree

Materialization: generate results of an expression whose inputs are relations or
are already computed, materialize (store) it on disk. Repeat.

Pipelining: pass on tuples to parent operations even as an operation is being
executed

= We study above alternatives in more detail

Database System Concepts - 7" Edition 1.29 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

14

Materialization

= Materialized evaluation: evaluate one operation at a time, starting at the lowest-level.
Use intermediate results materialized into temporary relations to evaluate next-level
operations.

= E.g., in figure below, compute and store
O-building:"Watson“(department)

then compute the store its join with instructor, and finally compute the projection on

name.
W ame
o ... instructor
building = “Watson”
department
Database System Concepts - 7" Edition 1.30 ©Silberschatz, Korth and Sudarshan

Materialization (Cont.)

= Materialized evaluation is always applicable
= Cost of writing results to disk and reading them back can be quite high
Our cost formulas for operations ignore cost of writing results to disk, so

= Overall cost = Sum of costs of individual operations +
cost of writing intermediate results to disk

= Double buffering: use two output buffers for each operation, when one is full write it to
disk while the other is getting filled

Allows overlap of disk writes with computation and reduces execution time

Database System Concepts - 7" Edition 1.31 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

15

Pipelining

= Pipelined evaluation: evaluate several operations simultaneously, passing the results
of one operation on to the next.

= E.g., in previous expression tree, don’t store result of
O building="watson" (departmend

instead, pass tuples directly to the join.. Similarly, don’t store result of join, pass
tuples directly to projection.

= Much cheaper than materialization: no need to store a temporary relation to disk.
= Pipelining may not always be possible — e.g., sort, hash-join.

= For pipelining to be effective, use evaluation algorithms that generate output tuples
even as tuples are received for inputs to the operation.

= Pipelines can be executed in two ways: demand driven and producer driven

Database System Concepts - 7" Edition 1.32 ©Silberschatz, Korth and Sudarshan

Pipelining (Cont.)

= |n demand driven or lazy evaluation
system repeatedly requests next tuple from top level operation

Each operation requests next tuple from children operations as required, in order to
output its next tuple

In between calls, operation has to maintain “state” so it knows what to return next
= |n producer-driven or eager pipelining
Operators produce tuples eagerly and pass them up to their parents

= Buffer maintained between operators, child puts tuples in buffer, parent removes
tuples from buffer

= if buffer is full, child waits till there is space in the buffer, and then generates more
tuples

System schedules operations that have space in output buffer and can process more
input tuples

= Alternative name: pull and push models of pipelining

Database System Concepts - 7" Edition 1.33 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

16

Pipelining (Cont.)

= |mplementation of demand-driven pipelining

Each operation is implemented as an iterator implementing the following
operations

= open()
E.g., file scan: initialize file scan
= state: pointer to beginning of file
E.g., merge join: sort relations;
= state: pointers to beginning of sorted relations
= next()
E.g., for file scan: Output next tuple, and advance and store file pointer

E.g., for merge join: continue with merge from earlier state till next output
tuple is found. Save pointers as iterator state.

= close()

Database System Concepts - 7" Edition 1.34 ©Silberschatz, Korth and Sudarshan

Blocking Operations

= Blocking operations: cannot generate any output until all input is consumed
E.g., sorting, aggregation, ...
= But can often consume inputs from a pipeline, or produce outputs to a pipeline
= Key idea: blocking operations often have two suboperations
E.g., for sort: run generation and merge
For hash join: partitioning and build-probe
= Treat them as separate operations

(a) Logical Query (b) Pipelined Plan

Database System Concepts - 7" Edition 1.35 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

17

Pipeline Stages

= Pipeline stages:
All operations in a stage run concurrently
A stage can start only after preceding stages have completed execution

(a) Logical Query (b) Pipelined Plan

Database System Concepts - 7" Edition 1.36 ©Silberschatz, Korth and Sudarshan

Pipelining for Continuous-Stream Data

= Data streams
Data entering database in a continuous manner
E.g., Sensor networks, user clicks, ...
= Continuous queries
Results get updated as streaming data enters the database
Aggregation on windows is often used
= E.g., tumbling windows divide time into units, e.g., hours, minutes
= Need to use pipelined processing algorithms
Punctuations used to infer when all data for a window has been received

Database System Concepts - 7" Edition 1.37 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

18

Measures of Query Cost

= Many factors contribute to time cost
disk access, CPU, and network communication

= Cost can be measured based on
response time, i.e. total elapsed time for answering query, or
total resource consumption

= We use total resource consumption as cost metric

Response time harder to estimate, and minimizing resource consumption is a good
idea in a shared database

= We ignore CPU costs for simplicity

Real systems do take CPU cost into account

Network costs must be considered for parallel systems
= We describe how estimate the cost of each operation

We do not include cost to writing output to disk

Database System Concepts - 7" Edition 1.38 ©Silberschatz, Korth and Sudarshan

Measures of Query Cost

= Disk cost can be estimated as:
Number of seeks * average-seek-cost
Number of blocks read * average-block-read-cost
Number of blocks written * average-block-write-cost

= For simplicity we just use the number of block transfers from disk and the number of
seeks as the cost measures

t; — time to transfer one block
= Assuming for simplicity that write cost is same as read cost
tg — time for one seek

Cost for b block transfers plus S seeks
b*t+S*tg

= tgand t; depend on where data is stored; with 4 KB blocks:
High end magnetic disk: tg = 4 msec and t; =0.1 msec
SSD: tg = 20-90 microsec and t; = 2-10 microsec for 4KB

Database System Concepts - 7" Edition 1.39 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Measures of Query Cost (Cont.)

= Required data may be buffer resident already, avoiding disk I/O
But hard to take into account for cost estimation
= Several algorithms can reduce disk 10 by using extra buffer space

Amount of real memory available to buffer depends on other concurrent queries
and OS processes, known only during execution

= \Worst case estimates assume that no data is initially in buffer and only the minimum
amount of memory needed for the operation is available

But more optimistic estimates are used in practice

Database System Concepts - 7" Edition 1.40 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

20

