
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Lock Management

Prof. Chris Clifton

31 March 2021

©Silberschatz, Korth and Sudarshan19.55Database System Concepts - 7th Edition

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data

granularities, where the small granularities are nested within larger ones

 Can be represented graphically as a tree (but don't confuse with tree-locking

protocol)

 When a transaction locks a node in the tree explicitly, it implicitly locks all the

node's descendants in the same mode.

 Granularity of locking (level in tree where locking is done):

• Fine granularity (lower in tree): high concurrency, high locking overhead

• Coarse granularity (higher in tree): low locking overhead, low concurrency

©Jan-21 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan19.56Database System Concepts - 7th Edition

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

• database

• area

• file

• record

©Silberschatz, Korth and Sudarshan19.59Database System Concepts - 7th Edition

Compatibility Matrix with Intention Lock Modes

 The compatibility matrix for all lock modes is:

©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan19.60Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

 Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any
mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is
currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent
of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node (that
is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently
locked by Ti.

 Observe that locks are acquired in root-to-leaf order, whereas they are released in
leaf-to-root order.

 Lock granularity escalation: in case there are too many locks at a particular level,
switch to higher granularity S or X lock

©Silberschatz, Korth and Sudarshan19.61Database System Concepts - 7th Edition

Insert/Delete Operations and Predicate Reads

 Locking rules for insert/delete operations

• An exclusive lock must be obtained on an item before it is deleted

• A transaction that inserts a new tuple into the database I automatically given
an X-mode lock on the tuple

 Ensures that

• reads/writes conflict with deletes

• Inserted tuple is not accessible by other transactions until the transaction
that inserts the tuple commits

©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan19.62Database System Concepts - 7th Edition

Phantom Phenomenon

 Example of phantom phenomenon.

• A transaction T1 that performs predicate read (or scan) of a relation

 select count(*)
from instructor
where dept_name = 'Physics'

• and a transaction T2 that inserts a tuple while T1 is active but after
predicate read

 insert into instructor values ('11111', 'Feynman', 'Physics', 94000)

(conceptually) conflict in spite of not accessing any tuple in common.

 If only tuple locks are used, non-serializable schedules can result

• E.g. the scan transaction does not see the new instructor, but may read
some other tuple written by the update transaction

 Can also occur with updates

• E.g. update Wu’s department from Finance to Physics

©Silberschatz, Korth and Sudarshan19.63Database System Concepts - 7th Edition

Insert/Delete Operations and Predicate Reads

 Another Example: T1 and T2 both find maximum instructor ID in
parallel, and create new instructors with ID = maximum ID + 1

• Both instructors get same ID, not possible in serializable schedule

 Schedule

©Jan-21 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan19.64Database System Concepts - 7th Edition

Handling Phantoms

 There is a conflict at the data level

• The transaction performing predicate read or scanning the relation is reading

information that indicates what tuples the relation contains

• The transaction inserting/deleting/updating a tuple updates the same information.

• The conflict should be detected, e.g. by locking the information.

 One solution:

• Associate a data item with the relation, to represent the information about what

tuples the relation contains.

• Transactions scanning the relation acquire a shared lock in the data item,

• Transactions inserting or deleting a tuple acquire an exclusive lock on the data

item. (Note: locks on the data item do not conflict with locks on individual tuples.)

 Above protocol provides very low concurrency for insertions/deletions.

©Silberschatz, Korth and Sudarshan19.65Database System Concepts - 7th Edition

Index Locking To Prevent Phantoms

 Index locking protocol to prevent phantoms

• Requires that every relation must have at least one index.

• A transaction can access tuples only after finding them through one or more
indices on the relation

• A transaction Ti that performs a lookup must lock all the index leaf nodes that it
accesses, in S-mode

 Even if the leaf node does not contain any tuple satisfying the index lookup (e.g.
for a range query, no tuple in a leaf is in the range)

• A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

 Must update all indices to r

 Must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

• The rules of the two-phase locking protocol must be observed

 Guarantees that phantom phenomenon won’t occur

©Jan-21 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan19.66Database System Concepts - 7th Edition

Next-Key Locking to Prevent Phantoms

 Index-locking protocol to prevent phantoms locks entire leaf node

• Can result in poor concurrency if there are many inserts

 Next-key locking protocol: provides higher concurrency

• Lock all values that satisfy index lookup (match lookup value, or fall in

lookup range)

• Also lock next key value in index

 even for inserts/deletes

• Lock mode: S for lookups, X for insert/delete/update

 Ensures detection of query conflicts with inserts, deletes and updates

Consider B+-tree leaf nodes as below, with query predicate 7 ≤ X ≤ 16.

Check what happens with next-key locking when inserting: (i) 15 and (ii) 7

