
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Lock Management

Prof. Chris Clifton

31 March 2021

©Silberschatz, Korth and Sudarshan19.55Database System Concepts - 7th Edition

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data

granularities, where the small granularities are nested within larger ones

 Can be represented graphically as a tree (but don't confuse with tree-locking

protocol)

 When a transaction locks a node in the tree explicitly, it implicitly locks all the

node's descendants in the same mode.

 Granularity of locking (level in tree where locking is done):

• Fine granularity (lower in tree): high concurrency, high locking overhead

• Coarse granularity (higher in tree): low locking overhead, low concurrency

©Jan-21 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan19.56Database System Concepts - 7th Edition

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

• database

• area

• file

• record

©Silberschatz, Korth and Sudarshan19.59Database System Concepts - 7th Edition

Compatibility Matrix with Intention Lock Modes

 The compatibility matrix for all lock modes is:

©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan19.60Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

 Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any
mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is
currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent
of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node (that
is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently
locked by Ti.

 Observe that locks are acquired in root-to-leaf order, whereas they are released in
leaf-to-root order.

 Lock granularity escalation: in case there are too many locks at a particular level,
switch to higher granularity S or X lock

©Silberschatz, Korth and Sudarshan19.61Database System Concepts - 7th Edition

Insert/Delete Operations and Predicate Reads

 Locking rules for insert/delete operations

• An exclusive lock must be obtained on an item before it is deleted

• A transaction that inserts a new tuple into the database I automatically given
an X-mode lock on the tuple

 Ensures that

• reads/writes conflict with deletes

• Inserted tuple is not accessible by other transactions until the transaction
that inserts the tuple commits

©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan19.62Database System Concepts - 7th Edition

Phantom Phenomenon

 Example of phantom phenomenon.

• A transaction T1 that performs predicate read (or scan) of a relation

 select count(*)
from instructor
where dept_name = 'Physics'

• and a transaction T2 that inserts a tuple while T1 is active but after
predicate read

 insert into instructor values ('11111', 'Feynman', 'Physics', 94000)

(conceptually) conflict in spite of not accessing any tuple in common.

 If only tuple locks are used, non-serializable schedules can result

• E.g. the scan transaction does not see the new instructor, but may read
some other tuple written by the update transaction

 Can also occur with updates

• E.g. update Wu’s department from Finance to Physics

©Silberschatz, Korth and Sudarshan19.63Database System Concepts - 7th Edition

Insert/Delete Operations and Predicate Reads

 Another Example: T1 and T2 both find maximum instructor ID in
parallel, and create new instructors with ID = maximum ID + 1

• Both instructors get same ID, not possible in serializable schedule

 Schedule

©Jan-21 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan19.64Database System Concepts - 7th Edition

Handling Phantoms

 There is a conflict at the data level

• The transaction performing predicate read or scanning the relation is reading

information that indicates what tuples the relation contains

• The transaction inserting/deleting/updating a tuple updates the same information.

• The conflict should be detected, e.g. by locking the information.

 One solution:

• Associate a data item with the relation, to represent the information about what

tuples the relation contains.

• Transactions scanning the relation acquire a shared lock in the data item,

• Transactions inserting or deleting a tuple acquire an exclusive lock on the data

item. (Note: locks on the data item do not conflict with locks on individual tuples.)

 Above protocol provides very low concurrency for insertions/deletions.

©Silberschatz, Korth and Sudarshan19.65Database System Concepts - 7th Edition

Index Locking To Prevent Phantoms

 Index locking protocol to prevent phantoms

• Requires that every relation must have at least one index.

• A transaction can access tuples only after finding them through one or more
indices on the relation

• A transaction Ti that performs a lookup must lock all the index leaf nodes that it
accesses, in S-mode

 Even if the leaf node does not contain any tuple satisfying the index lookup (e.g.
for a range query, no tuple in a leaf is in the range)

• A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

 Must update all indices to r

 Must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

• The rules of the two-phase locking protocol must be observed

 Guarantees that phantom phenomenon won’t occur

©Jan-21 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan19.66Database System Concepts - 7th Edition

Next-Key Locking to Prevent Phantoms

 Index-locking protocol to prevent phantoms locks entire leaf node

• Can result in poor concurrency if there are many inserts

 Next-key locking protocol: provides higher concurrency

• Lock all values that satisfy index lookup (match lookup value, or fall in

lookup range)

• Also lock next key value in index

 even for inserts/deletes

• Lock mode: S for lookups, X for insert/delete/update

 Ensures detection of query conflicts with inserts, deletes and updates

Consider B+-tree leaf nodes as below, with query predicate 7 ≤ X ≤ 16.

Check what happens with next-key locking when inserting: (i) 15 and (ii) 7

