
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Cloud: NoSQL Databases

Prof. Chris Clifton

7 December 2021

The Cloud:

What’s it all About?

Im
p

a
la

©Jan-21 Christopher W. Clifton 220

Beyond RDBMS

The Relational Model is too limiting!

• Simple data model – doesn’t capture semantics

– Object-Oriented DBMS (‘80s)

• Fixed schema – not flexible enough

– XML databases (‘90s)

• Too heavyweight/slow

– NoSQL databases (‘00s)

The Latest: Cloud Databases

• PERFORMANCE!

– More speed, bigger data

• But this doesn’t come for free

– Eventual consistency (eventually all the updates will occur)

– No isolation guarantees

– Limited reliability guarantees

©Jan-21 Christopher W. Clifton 320

Cloud Databases: Why?

• Scaling

– 1000’s of nodes working simultaneously to analyze data

• Answer challenging queries on big data

– If you can express the query in a limited query language

• Several examples

– Hadoop, Spark, …

Are we Post-Relational?

• Object-oriented database object-relational database

– Today: Commercial RDBMS includes type extensibility and OO

features

• XML database

– XML storage tools for RDBMS

• Cloud Database

– See Hive – will we see Map-Reduce engines as part of

traditional RDBMS?

©Jan-21 Christopher W. Clifton 420

Cloud Data Processing Basic Idea:

Divide and Conquer

• Divide data into units

• Compute on those units

• Combine results

• Need algorithms where

this works!

Answer!

Distributed Indexing

• Distributed processing driven by need to index and

analyze huge amounts of data (i.e., the Web)

• Large numbers of inexpensive servers used rather than

larger, more expensive machines

• MapReduce is a distributed programming tool designed

for indexing and analysis tasks

©Jan-21 Christopher W. Clifton 520

CCA – Oct 2008

Map/Reduce

• Map/Reduce is a programming model for efficient distributed computing

• Works like a Unix pipeline:

– cat input | grep | sort | uniq -c | cat > output

– Input | Map | Shuffle & Sort | Reduce | Output

• Efficiency from

– Streaming through data, reducing seeks

– Pipelining

• A good fit for a lot of applications

– Log processing

– Web index building

MapReduce

• Distributed programming framework that focuses on data
placement and distribution

• Mapper

– Generally, transforms a list of items into another list of items of
the same length

• Reducer

– Transforms a list of items into a single item

– Definitions not so strict in terms of number of outputs

• Many mapper and reducer tasks on a cluster of machines

©Jan-21 Christopher W. Clifton 620

CCA – Oct 2008

Map/Reduce Dataflow

MapReduce

• Basic process

– Map stage which transforms data records into pairs, each with a key

and a value

– Shuffle uses a hash function so that all pairs with the same key end

up next to each other and on the same machine

– Reduce stage processes records in batches, where all pairs with the

same key are processed at the same time

• Idempotence of Mapper and Reducer provides fault tolerance

– multiple operations on same input gives same output

©Jan-21 Christopher W. Clifton 720

Select word, count(*) from doc group by

word;
public class WordCount {

public static class Map extends MapReduceBase
implements Mapper<LongWritable, Text, Text,
IntWritable> {

private final static IntWritable one = new
IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());

output.collect(word, one);

}

}

}

public static class Reduce extends
MapReduceBase implements Reducer<Text,
IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable>
values, OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {
sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

}

Select word, count(*) from doc group by

word;
public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

}

}

©Jan-21 Christopher W. Clifton 820

Introduction to Hadoop

Owen O’Malley

Yahoo!, Grid Team

owen@yahoo-inc.com

CCA – Oct 2008

Problem

• How do you scale up applications?

– Run jobs processing 100’s of terabytes of data

– Takes 11 days to read on 1 computer

• Need lots of cheap computers

– Fixes speed problem (15 minutes on 1000 computers), but…

– Reliability problems

• In large clusters, computers fail every day

• Cluster size is not fixed

• Need common infrastructure

– Must be efficient and reliable

©Jan-21 Christopher W. Clifton 920

CCA – Oct 2008

Solution

• Open Source Apache Project

• Hadoop Core includes:

– Distributed File System - distributes data

– Map/Reduce - distributes application

• Written in Java

• Runs on

– Linux, Mac OS/X, Windows, and Solaris

– Commodity hardware

CCA – Oct 2008

Commodity Hardware Cluster

• Typically in 2 level architecture

– Nodes are commodity PCs

– 40 nodes/rack

– Uplink from rack is 8 gigabit

– Rack-internal is 1 gigabit

©Jan-21 Christopher W. Clifton 1020

CCA – Oct 2008

Distributed File System

• Single namespace for entire cluster

– Managed by a single namenode.

– Files are single-writer and append-only.

– Optimized for streaming reads of large files.

• Files are broken in to large blocks.

– Typically 128 MB

– Replicated to several datanodes, for reliability

• Client talks to both namenode and datanodes

– Data is not sent through the namenode.

– Throughput of file system scales nearly linearly with the number of nodes.

• Access from Java, C, or command line.

CCA – Oct 2008

Data Correctness

• Data is checked with CRC32

• File Creation

– Client computes checksum per 512 byte

– DataNode stores the checksum

• File access

– Client retrieves the data and checksum from DataNode

– If Validation fails, Client tries other replicas

• Periodic Validation

©Jan-21 Christopher W. Clifton 1120

CCA – Oct 2008

Map/Reduce features

• Java and C++ APIs

– In Java use Objects, while in C++ bytes

• Each task can process data sets larger than RAM

• Automatic re-execution on failure

– In a large cluster, some nodes are always slow or flaky

– Framework re-executes failed tasks

• Locality optimizations

– Map-Reduce queries HDFS for locations of input data

– Map tasks are scheduled close to the inputs when possible

CCA – Oct 2008

How is Yahoo using Hadoop?

• We started with building better applications

– Scale up web scale batch applications (search, ads, …)

– Factor out common code from existing systems, so new applications will be easier to

write

– Manage the many clusters we have more easily

• The mission now includes research support

– Build a huge data warehouse with many Yahoo! data sets

– Couple it with a huge compute cluster and programming models to make using the data

easy

– Provide this as a service to our researchers

– We are seeing great results!

• Experiments can be run much more quickly in this environment

©Jan-21 Christopher W. Clifton 1220

CCA – Oct 2008

Running Production WebMap

• Search needs a graph of the “known” web

– Invert edges, compute link text, whole graph heuristics

• Periodic batch job using Map/Reduce

– Uses a chain of ~100 map/reduce jobs

• Scale

– 1 trillion edges in graph

– Largest shuffle is 450 TB

– Final output is 300 TB compressed

– Runs on 10,000 cores

– Raw disk used 5 PB

• Written mostly using Hadoop’s C++ interface

CCA – Oct 2008

Hadoop Community

• Apache is focused on project communities
– Users

– Contributors
• write patches

– Committers
• can commit patches too

– Project Management Committee
• vote on new committers and releases too

• Apache is a meritocracy

• Use, contribution, and diversity is growing

– But we need and want more!

©Jan-21 Christopher W. Clifton 1320

A ⨝ B

• A and B are Hadoop files

– Produce new Hadoop file that is join of A and B

• Reduce-side join

– Send different keys to different reducer

• Map-side join

– Broadcast join

How to join efficiently?

• Sort-Merge join

– Sort tables

– Read both, outputting tuples that join

• Hash join

– Hash function divides into groups

• All keys that can match go into same group

– Groups small enough to fit in memory

• We’ll use both ideas

©Jan-21 Christopher W. Clifton 1420

Hash Join Revisited

Aardvark

Caiman

Eagle

Deer

Albatross

Avocet

Butterfly

Ferret

Badger

Bobcat

Bear

Bird

Bat

Aardvark

Caiman

Eagle

Deer

Alpaca

Alligator

Butterfly

Ferret

Bison

Bobcat

Bear

Bird

Bat

Reduce-Side Join

(Chandar’10)

©Jan-21 Christopher W. Clifton 1520

Map function

• Read tuples

– Write tuples with “tag”

void map(Text key , Text values ,

OutputCollector <TextPair, TextPair> output ,

Reporter reporter) throws IOException

{

output.collect(new TextPair(key.toString (), tag),

new TextPair(values.toString (), tag));

}

Partition the Data

• Special partition function

– Partition only on key (join attribute)

int getPartition (TextPair key ,

TextPair value , int numPartitions) {

return (key.getFirst ().hashCode () &

Integer.MAX_VALUE)

% numPartitions ;

}

©Jan-21 Christopher W. Clifton 1620

Reduce

• Read file

– If first dataset, save

– If second dataset, output matches

• Assumes data sorted

– But Hadoop takes care of this

Reduce

void reduce(TextPair key , Iterator <TextPair> values , OutputCollector <Text , Text > output , Reporter reporter)
throws IOException {

ArrayList <Text > T1 = new ArrayList <Text >();

Text tag = key.getSecond ();

TextPair value = null;

while(values.hasNext ()) {

value = values.next ();

if(value.getSecond ().compareTo(tag)==0) {

T1.add(value.getFirst ());

} else {

for(Text val : T1) {

output.collect(key.getFirst (),

new Text(val.toString () + "\t“ +

value.getFirst ().toString ()));

} } } }

©Jan-21 Christopher W. Clifton 1720

Broadcast Join

(Blanas et al. SIGMOD‘10)

• Map-only algorithm

– Everything done in the “first phase”

– Saves move/sort of data

• Limitation: One dataset must fit in memory

– Copy kept at every mapper

– Mapper(s) then run on large dataset “in place”

– Outputs join

But what about…

• Schema

– Need to know what the data is about

• Queries

– Do you really want to write map-reduce programs?

– Optimization?

©Jan-21 Christopher W. Clifton 1820

HIVE:

RDBMS on Hadoop

• Limited schema

– Tables

– Primitive types

• Subset of SQL

– Select-Project

– (equi)join

– Group by

• Operations implemented using Map-Reduce

What is Hive?

• A system for managing and querying structured data built

on top of Hadoop

• Three main components:

– MapReduce for execution

– Hadoop Distributed File System for storage

– Metadata in an RDBMS

• Hive QL based on SQL

– Easy for users familiar with SQL

©Jan-21 Christopher W. Clifton 1920

Hive Architecture

Google BigTable

• Simple data model

• Tables distributed

– “row keys”

• Transactional consistency only on a per-row basis

©Jan-21 Christopher W. Clifton 2020

Google Bigtable

• Multi-version

– Each row timestamped

• Three-level location

hierarchy

– Claim: “B-tree like”

