Cloud: NoSQL Databases
Prof. Chris Clifton
7 December 2021

The Cloud: What's it all About?

cloudera
HIVE
Spark
Impala
hadoop MapReduce
Beyond RDBMS

The Relational Model is too limiting!

• Simple data model – doesn’t capture semantics
 – Object-Oriented DBMS (‘80s)
• Fixed schema – not flexible enough
 – XML databases (‘90s)
• Too heavyweight/slow
 – NoSQL databases (‘00s)

The Latest: Cloud Databases

• PERFORMANCE!
 – More speed, bigger data
• But this doesn’t come for free
 – *Eventual* consistency (eventually all the updates will occur)
 – No isolation guarantees
 – Limited reliability guarantees
Cloud Databases: Why?

- Scaling
 - 1000’s of nodes working simultaneously to analyze data
- Answer challenging queries on big data
 - If you can express the query in a limited query language
- Several examples
 - Hadoop, Spark, ...

Are we Post-Relational?

- Object-oriented database \rightarrow object-relational database
 - Today: Commercial RDBMS includes type extensibility and OO features
- XML database
 - XML storage tools for RDBMS
- Cloud Database
 - See Hive – will we see Map-Reduce engines as part of traditional RDBMS?
Cloud Data Processing Basic Idea: Divide and Conquer

- Divide data into units
- Compute on those units
- Combine results
- *Need algorithms where this works!*

Distributed Indexing

- Distributed processing driven by need to index and analyze huge amounts of data (i.e., the Web)
- Large numbers of inexpensive servers used rather than larger, more expensive machines
- *MapReduce* is a distributed programming tool designed for indexing and analysis tasks
Map/Reduce

- Map/Reduce is a programming model for efficient distributed computing
- Works like a Unix pipeline:
 - `cat input | grep | sort | uniq -c | cat > output`
 - `Input | Map | Shuffle & Sort | Reduce | Output`
- Efficiency from
 - Streaming through data, reducing seeks
 - Pipelining
- A good fit for a lot of applications
 - Log processing
 - Web index building

MapReduce

- Distributed programming framework that focuses on data placement and distribution
- **Mapper**
 - Generally, transforms a list of items into another list of items of the same length
- **Reducer**
 - Transforms a list of items into a single item
 - Definitions not so strict in terms of number of outputs
- Many mapper and reducer tasks on a cluster of machines
MapReduce

• Basic process
 – *Map* stage which transforms data records into pairs, each with a key and a value
 – *Shuffle* uses a hash function so that all pairs with the same key end up next to each other and on the same machine
 – *Reduce* stage processes records in batches, where all pairs with the same key are processed at the same time

• *Idempotence* of Mapper and Reducer provides fault tolerance
 – multiple operations on same input gives same output
Select word, count(*) from doc group by word;

```java
public class WordCount {
    public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens()) {
                word.set(tokenizer.nextToken());
                output.collect(word, one);
            }
        }
    }
    public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
        public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
            int sum = 0;
            while (values.hasNext()) {
                sum += values.next().get();
            }
            output.collect(key, new IntWritable(sum));
        }
    }
    public static void main(String[] args) throws Exception {
        JobConf conf = new JobConf(WordCount.class);
        conf.setJobName("wordcount");
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);
        conf.setMapperClass(Map.class);
        conf.setCombinerClass(Reduce.class);
        conf.setReducerClass(Reduce.class);
        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);
        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
        JobClient.runJob(conf);
    }
}
```
Introduction to Hadoop

Owen O’Malley
Yahoo!, Grid Team
owen@yahoo-inc.com

Problem

• How do you scale up applications?
 – Run jobs processing 100’s of terabytes of data
 – Takes 11 days to read on 1 computer

• Need lots of cheap computers
 – Fixes speed problem (15 minutes on 1000 computers), but…
 – Reliability problems
 • In large clusters, computers fail every day
 • Cluster size is not fixed

• Need common infrastructure
 – Must be efficient and reliable
Solution

• Open Source Apache Project
• Hadoop Core includes:
 – Distributed File System - distributes data
 – Map/Reduce - distributes application
• Written in Java
• Runs on
 – Linux, Mac OS/X, Windows, and Solaris
 – Commodity hardware

Commodity Hardware Cluster

• Typically in 2 level architecture
 – Nodes are commodity PCs
 – 40 nodes/rack
 – Uplink from rack is 8 gigabit
 – Rack-internal is 1 gigabit
Distributed File System

- Single namespace for entire cluster
 - Managed by a single namenode.
 - Files are single-writer and append-only.
 - Optimized for streaming reads of large files.
- Files are broken into large blocks.
 - Typically 128 MB
 - Replicated to several datanodes, for reliability
- Client talks to both namenode and datanodes
 - Data is not sent through the namenode.
 - Throughput of file system scales nearly linearly with the number of nodes.
- Access from Java, C, or command line.

Data Correctness

- Data is checked with CRC32
- File Creation
 - Client computes checksum per 512 byte
 - DataNode stores the checksum
- File access
 - Client retrieves the data and checksum from DataNode
 - If Validation fails, Client tries other replicas
- Periodic Validation
Map/Reduce features

- Java and C++ APIs
 - In Java use Objects, while in C++ bytes
- Each task can process data sets larger than RAM
- Automatic re-execution on failure
 - In a large cluster, some nodes are always slow or flaky
 - Framework re-executes failed tasks
- Locality optimizations
 - Map-Reduce queries HDFS for locations of input data
 - Map tasks are scheduled close to the inputs when possible

How is Yahoo using Hadoop?

- We started with building better applications
 - Scale up web scale batch applications (search, ads, …)
 - Factor out common code from existing systems, so new applications will be easier to write
 - Manage the many clusters we have more easily
- The mission now includes research support
 - Build a huge data warehouse with many Yahoo! data sets
 - Couple it with a huge compute cluster and programming models to make using the data easy
 - Provide this as a service to our researchers
 - We are seeing great results!
 - Experiments can be run much more quickly in this environment
Running Production WebMap

- Search needs a graph of the “known” web
 - Invert edges, compute link text, whole graph heuristics
- Periodic batch job using Map/Reduce
 - Uses a chain of ~100 map/reduce jobs
- Scale
 - 1 trillion edges in graph
 - Largest shuffle is 450 TB
 - Final output is 300 TB compressed
 - Runs on 10,000 cores
 - Raw disk used 5 PB
- Written mostly using Hadoop’s C++ interface

Hadoop Community

- Apache is focused on project communities
 - Users
 - Contributors
 - write patches
 - Committers
 - can commit patches too
 - Project Management Committee
 - vote on new committers and releases too
- Apache is a meritocracy
- Use, contribution, and diversity is growing
 - But we need and want more!
A \bowtie B

• A and B are Hadoop files
 – Produce new Hadoop file that is join of A and B

• Reduce-side join
 – Send different keys to different reducer

• Map-side join
 – Broadcast join

How to join efficiently?

• Sort-Merge join
 – Sort tables
 – Read both, outputting tuples that join

• Hash join
 – Hash function divides into groups
 • All keys that can match go into same group
 – Groups small enough to fit in memory

• We’ll use both ideas
Hash Join Revisited

Aardvark
Caiman
Eagle
Deer
Alpaca
Alligator
Butterfly
Ferret
Bison
Bobcat
Bear
Bird
Bat

Reduce-Side Join
(Chandar’10)

Mappers
1 0 Jack
2 0 Daniel
4 0 Martin
5 0 King
3 0 Mary
4 0 Jane
5 1 London
2 1 London
4 1 Rome
3 1 Paris
1 1 Madrid

Reducers
1 1 Madrid
4 0 Martin
3 0 Mary
4 1 Rome
5 0 King
5 1 London

1 Jack
2 Daniel
3 Mary
4 Martin
5 Jack

1 Madrid
2 London
3 Paris
4 Rome
5 London
Map function

• Read tuples
 – Write tuples with “tag”

```java
void map(Text key, Text values, OutputCollector<TextPair, TextPair> output, Reporter reporter) throws IOException {
  output.collect(new TextPair(key.toString(), tag),
                  new TextPair(values.toString(), tag));
}
```

Partition the Data

• Special partition function
 – Partition only on key (join attribute)

```java
int getPartition(TextPair key, TextPair value, int numPartitions) {
  return (key.getFirst().hashCode() & Integer.MAX_VALUE)
           % numPartitions;
}
```
Reduce

- Read file
 - If first dataset, save
 - If second dataset, output matches
- Assumes data sorted
 - But Hadoop takes care of this

```java
void reduce(TextPair key, Iterator<TextPair> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException {
    ArrayList<Text> T1 = new ArrayList<Text>();
    Text tag = key.getSecond();
    TextPair value = null;
    while(values.hasNext()) {
        value = values.next();
        if(value.getSecond().compareTo(tag)==0) {
            T1.add(value.getFirst());
        } else {
            for(Text val : T1) {
                output.collect(key.getFirst(),
                               new Text(val.toString() + "t" + value.getFirst().toString()));
            }
        }
    }
}
```
Broadcast Join
(*Blanas et al. SIGMOD‘10*)

- Map-only algorithm
 - Everything done in the “first phase”
 - Saves move/sort of data
- Limitation: One dataset must fit in memory
 - Copy kept at every mapper
 - Mapper(s) then run on large dataset “in place”
 - Outputs join

But what about…

- Schema
 - Need to know what the data is about
- Queries
 - Do you really want to write map-reduce programs?
 - Optimization?
HIVE:
RDBMS on Hadoop

- Limited schema
 - Tables
 - Primitive types
- Subset of SQL
 - Select-Project
 - (equi)join
 - Group by
- Operations implemented using Map-Reduce

What is Hive?

- A system for managing and querying structured data built on top of Hadoop
- Three main components:
 - MapReduce for execution
 - Hadoop Distributed File System for storage
 - Metadata in an RDBMS
- Hive QL based on SQL
 - Easy for users familiar with SQL
Hive Architecture

Google BigTable

- Simple data model

- Tables distributed
 - “row keys”

- Transactional consistency only on a per-row basis
Google Bigtable

- Multi-version
 - Each row timestamped
- Three-level location hierarchy
 - Claim: “B-tree like”