J 7 PURDUE | sumenttcomterscons

UNIVERSITY

CS 44800: Introduction To
Relational Database Systems

Cloud: NoSQL Databases
Prof. Chris Clifton
7 December 2021

| ndiana
Genter for
Database

Systems

a5 .
PURDUE The Cloud:
What's it all About?

Department of Computer Science

© 2021 Christopher W. Clifton

27
PORDYE Beyond RDBMS

Department of Computer Science

The Relational Model is too limiting!
« Simple data model — doesn’t capture semantics
— Object-Oriented DBMS (‘80s)
» Fixed schema — not flexible enough
— XML databases (‘90s)
» Too heavyweight/slow
— NoSQL databases (‘00s)

2
PURDUE The Latest;: Cloud Databases

Department of Computer Science

* PERFORMANCE!
— More speed, bigger data
 But this doesn’t come for free
— Eventual consistency (eventually all the updates will occur)
— No isolation guarantees
— Limited reliability guarantees

© 2021 Christopher W. Clifton

27
PORDYE Cloud Databases: Why?

Department of Computer Science

« Scaling

—1000’s of nodes working simultaneously to analyze data
« Answer challenging queries on big data

— If you can express the query in a limited query language
» Several examples

— Hadoop, Spark, ...

27
PURDUE Are we Post-Relational?

Department of Computer Science

» Object-oriented database - object-relational database

— Today: Commercial RDBMS includes type extensibility and OO
features

« XML database
— XML storage tools for RDBMS

e Cloud Database

— See Hive — will we see Map-Reduce engines as part of
traditional RDBMS?

© 2021 Christopher W. Clifton

PUR%JE Cloud Data Processing Basic ldea:

UNIVERSITY D|V|de and Conquer

Department of Computer Science

* Divide data into units
« Compute on those units
 Combine results

* Need algorithms where
this works!

27
PORDUE Distributed Indexing

« Distributed processing driven by need to index and
analyze huge amounts of data (i.e., the Web)

» Large numbers of inexpensive servers used rather than
larger, more expensive machines

« MapReduce is a distributed programming tool designed
for indexing and analysis tasks

© 2021 Christopher W. Clifton

9_’ Map/Reduce

Map/Reduce is a programming model for efficient distributed computing
» Works like a Unix pipeline:

— catinput | grep | sort | unig-c | cat> output

— Input | Map | Shuffle & Sort| Reduce | Output

Efficiency from

— Streaming through data, reducing seeks

— Pipelining

A good fit for a lot of applications

— Log processing

— Web index building

YAaHoO!

27
PORDUE MapReduce

Department of Computer Science

« Distributed programming framework that focuses on data
placement and distribution
* Mapper

— Generally, transforms a list of items into another list of items of
the same length

« Reducer
— Transforms a list of items into a single item
— Definitions not so strict in terms of number of outputs

« Many mapper and reducer tasks on a cluster of machines

© 2021 Christopher W. Clifton

9_’ Map/Reduce Dataflow

Input H Map Shuffle & Sort H Reduce H ‘Output

PORDUE MapReduce
» Basic process

— Map stage which transforms data records into pairs, each with a key
and a value

— Shuffle uses a hash function so that all pairs with the same key end
up next to each other and on the same machine

— Reduce stage processes records in batches, where all pairs with the
same key are processed at the same time

» ldempotence of Mapper and Reducer provides fault tolerance
— multiple operations on same input gives same output

© 2021 Christopher W. Clifton

2

PURDUE

UNIVERSITY

Department of Computer Science

public class WordCount {

public static class Map extends MapReduceBase
implements Mapper<LongWritable, Text, Text,

Select word, count(*) from doc group by
word,;

public static class Reduce extends
MapReduceBase implements Reducer<Text,
IntWritable, Text, IntWritable> {

IntWritable> { public void reduce(Text key, Iterator<IntWritable>
private final static IntWritable one = new values, OutputCollector<Text, IntWritable> output,
IntWritable(1); Reporter reporter) throws IOException {

int sum =0;
while (values.hasNext()) {
sum += values.next().get();

private Text word = new Text();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,

Reporter reporter) throws IOException { output.collect(key, new IntWritable(sum));

String line = value.toString(); }
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) { }

word.set(tokenizer.nextToken());
output.collect(word, one);

a5

PURDUE

UNIVERSITY

Select word, count(*) from doc group by
word;

public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount™);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setlnputFormat(TextinputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setlnputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);

Department of Computer Science

© 2021 Christopher W. Clifton

Introduction to Hadoop

Owen O’Malley
Yahoo!, Grid Team
owen@yahoo-inc.com

6! Problem

* How do you scale up applications?

— Run jobs processing 100’s of terabytes of data

— Takes 11 days to read on 1 computer

* Need lots of cheap computers
— Fixes speed problem (15 minutes on 1000 computers), but...

— Reliability problems
» Inlarge clusters, computers fail every day
» Cluster size is not fixed

* Need common infrastructure

— Must be efficient and reliable

YaHooO!

© 2021 Christopher W. Clifton

9_’ Solution

Open Source Apache Project

Hadoop Core includes:
— Distributed File System - distributes data
— Map/Reduce - distributes application

Written in Java

Runs on
— Linux, Mac OS/X, Windows, and Solaris

— Commodity hardware

YARaHoO!
6! Commodity Hardware Cluster
” -— 31-49%22?1
‘// \\.‘
Pl TN
Node | Node [Node Node | Node Node
| A O [=
* Typically in 2 level architecture
— Nodes are commodity PCs
— 40 nodes/rack
— Uplink from rack is 8 gigabit
— Rack-internal is 1 gigabit
YaHroo!

© 2021 Christopher W. Clifton

9_’ Distributed File System

» Single namespace for entire cluster
— Managed by a single namenode.
— Files are single-writer and append-only.
— Optimized for streaming reads of large files.
* Files are broken in to large blocks.
— Typically 128 MB
— Replicated to several datanodes, for reliability
Client talks to both namenode and datanodes
— Data is not sent through the namenode.
— Throughput of file system scales nearly linearly with the number of nodes.

» Access from Java, C, or command line.

YAaHoO!

6! Data Correctness

Data is checked with CRC32

File Creation

— Client computes checksum per 512 byte

— DataNode stores the checksum

File access

— Client retrieves the data and checksum from DataNode
— If Validation fails, Client tries other replicas

Periodic Validation

YAaHoOO!

© 2021 Christopher W. Clifton

10

9_’ Map/Reduce features

Java and C++ APlIs
— In Java use Objects, while in C++ bytes
Each task can process data sets larger than RAM

Automatic re-execution on failure
— In alarge cluster, some nodes are always slow or flaky

— Framework re-executes failed tasks

Locality optimizations
— Map-Reduce queries HDFS for locations of input data
— Map tasks are scheduled close to the inputs when possible

YAaHoO!

6! How is Yahoo using Hadoop?

» We started with building better applications
— Scale up web scale batch applications (search, ads, ...)

— Factor out common code from existing systems, so new applications will be easier to
write

— Manage the many clusters we have more easily

* The mission now includes research support
— Build a huge data warehouse with many Yahoo! data sets

— Couple it with a huge compute cluster and programming models to make using the data
easy

— Provide this as a service to our researchers

— We are seeing great results!
» Experiments can be run much more quickly in this environment

YaHooO!

© 2021 Christopher W. Clifton

11

9_’ Running Production WebMap

» Search needs a graph of the “known” web

— Invert edges, compute link text, whole graph heuristics
» Periodic batch job using Map/Reduce

— Uses a chain of ~100 map/reduce jobs

* Scale

1 trillion edges in graph
Largest shuffle is 450 TB
Final output is 300 TB compressed

Runs on 10,000 cores
Raw disk used 5 PB

» Written mostly using Hadoop’s C++ interface

YAaHoO!

6! Hadoop Community

» Apache is focused on project communities
— Users
— Contributors
* write patches
— Committers
* can commit patches too
— Project Management Committee
» vote on new committers and releases too

+ Apache is a meritocracy

* Use, contribution, and diversity is growing
— But we need and want more!

YaHooO!

© 2021 Christopher W. Clifton

12

27
PORDYE A< B
« A and B are Hadoop files
— Produce new Hadoop file that is join of A and B
» Reduce-side join
— Send different keys to different reducer
« Map-side join
— Broadcast join

27
PORDUE How to join efficiently?

« Sort-Merge join

— Sort tables

— Read both, outputting tuples that join
* Hash join

— Hash function divides into groups

* All keys that can match go into same group

— Groups small enough to fit in memory
« We'll use both ideas

© 2021 Christopher W. Clifton

13

E M - M
PURDUE Hash Join Revisited

Department of Computer Science

Aardvark /\ Aardvark
Caiman v Caiman
Eagle Eagle
Deer Deer

Alpaca Albatross
Alligator Avocet
Butterfly Butterfly
Ferret Ferret
Bison Badger
Bobcat Bobcat
Bear Bear

Bird Bird
M v M

2

PURDUE Reduce-Side Join
Department of Computer Science (Ch an da r ’1 0)

==

B E==1 S

4 Martin) (0

B

3 wary 'z [omel [Lonon |

= B = ==
Mg Reser o N N

BN = .

ENE== N ST

4 Rome

2 casmon - S

> pans [[1ea [Eartmrn |

1 (Mana

© 2021 Christopher W. Clifton

27 _
PORDYE Map function
» Read tuples

— Write tuples with “tag”

void map(Text key , Text values ,
OutputCollector <TextPair, TextPair> output ,
Reporter reporter) throws IOException

{
output.collect(new TextPair(key.toString (), tag),
new TextPair(values.toString (), tag));
}
45 N
PURDUE Partition the Data

Department of Computer Science

» Special partition function
— Patrtition only on key (join attribute)
int getPartition (TextPair key ,
TextPair value , int numPartitions) {

return (key.getFirst ().hashCode () &
Integer.MAX_VALUE)
% numPartitions ;

© 2021 Christopher W. Clifton

15

2
PURDPUE Reduce
» Read file
— If first dataset, save
— If second dataset, output matches
« Assumes data sorted
— But Hadoop takes care of this

27
PURDUE Reduce

Department of Computer Science

void reduce(TextPair key , Iterator <TextPair> values , OutputCollector <Text , Text > output , Reporter reporter)
throws IOException {

ArrayList <Text > T1 = new ArrayList <Text >();
Text tag = key.getSecond ();
TextPair value = null;
while(values.hasNext ()) {
value = values.next ();
if(value.getSecond ().compareTo(tag)==0) {
T1.add(value.getFirst ());

}else {
for(Textval : T1) {
output.collect(key.getFirst (),
new Text(val.toString () + "\t“ +
value.getFirst ().toString ()));
} } } }

© 2021 Christopher W. Clifton

16

2

PURDUE Broadcast Join
NE——— (Blanas et al. SIGMOD*10)

« Map-only algorithm
— Everything done in the “first phase”
— Saves move/sort of data
 Limitation: One dataset must fit in memory
— Copy kept at every mapper
— Mapper(s) then run on large dataset “in place”

— Outputs join
2
PURDUE But what about...
« Schema
— Need to know what the data is about
* Queries

— Do you really want to write map-reduce programs?
— Optimization?

© 2021 Christopher W. Clifton

17

27 .
PURDUE HIVE: §
RDBMS on Hadoop e

Department of Computer Science

 Limited schema
— Tables
— Primitive types
» Subset of SQL
— Select-Project
— (equi)join
— Group by
» Operations implemented using Map-Reduce

27 -
PURDUE What is Hive?

Department of Computer Science

« A system for managing and querying structured data built
on top of Hadoop
* Three main components:
— MapReduce for execution
— Hadoop Distributed File System for storage
— Metadata in an RDBMS
» Hive QL based on SQL
— Easy for users familiar with SQL

© 2021 Christopher W. Clifton

18

a7 _ |
PURDUE Hive Architecture

Department of Computer Science

HADOOP
(MAP-REDUCE + HDFS)

Fig_1: Hive System Architecture

2 _
PORDUE Google BigTable

Department of Computer Science

« Simple data model

"contents:" "anchor:.cnnsi.com" "anchor:my.look.ca"
|

IS T DU T
Lt “m'..f |" ' | "CNN" tg "CNN.com" |=— tg
: : L

it
g S N S R

"com.cnn.www" —*

» Tables distributed
—“row keys”

» Transactional consistency only on a per-row basis

© 2021 Christopher W. Clifton

19

2

Department of Computer Science

* Multi-version
— Each row timestamped
* Three-level location
hierarchy
— Claim: “B-tree like”

Root tablet

Chubby file (1st METADATA tablet) =
h A

PORDYE Google Bigtable

Other

METADATA =
tablets oy

UserTablet

© 2021 Christopher W. Clifton

20

