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The Cloud:

What’s it all About?
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Beyond RDBMS

The Relational Model is too limiting!

• Simple data model – doesn’t capture semantics

– Object-Oriented DBMS (‘80s)

• Fixed schema – not flexible enough

– XML databases (‘90s)

• Too heavyweight/slow

– NoSQL databases (‘00s)

The Latest:  Cloud Databases

• PERFORMANCE!

– More speed, bigger data

• But this doesn’t come for free

– Eventual consistency (eventually all the updates will occur)

– No isolation guarantees

– Limited reliability guarantees
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Cloud Databases:  Why?

• Scaling

– 1000’s of nodes working simultaneously to analyze data

• Answer challenging queries on big data

– If you can express the query in a limited query language

• Several examples

– Hadoop, Spark, …

Are we Post-Relational?

• Object-oriented database  object-relational database

– Today:  Commercial RDBMS includes type extensibility and OO 

features

• XML database

– XML storage tools for RDBMS

• Cloud Database

– See Hive – will we see Map-Reduce engines as part of 

traditional RDBMS?
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Cloud Data Processing Basic Idea:

Divide and Conquer

• Divide data into units

• Compute on those units

• Combine results

• Need algorithms where 

this works!

Answer!

Distributed Indexing

• Distributed processing driven by need to index and 

analyze huge amounts of data (i.e., the Web)

• Large numbers of inexpensive servers used rather than 

larger, more expensive machines

• MapReduce is a distributed programming tool designed 

for indexing and analysis tasks
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CCA – Oct 2008

Map/Reduce

• Map/Reduce is a programming model for efficient distributed computing

• Works like a Unix pipeline:

– cat input | grep |       sort           | uniq -c      |  cat > output

– Input | Map | Shuffle & Sort |   Reduce | Output

• Efficiency from 

– Streaming through data, reducing seeks

– Pipelining

• A good fit for a lot of applications

– Log processing

– Web index building

MapReduce

• Distributed programming framework that focuses on data 
placement and distribution

• Mapper

– Generally, transforms a list of items into another list of items of 
the same length

• Reducer

– Transforms a list of items into a single item

– Definitions not so strict in terms of number of outputs

• Many mapper and reducer tasks on a cluster of machines
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CCA – Oct 2008

Map/Reduce Dataflow

MapReduce

• Basic process

– Map stage which transforms data records into pairs, each with a key 

and a value

– Shuffle uses a hash function so that all pairs with the same key end 

up next to each other and on the same machine

– Reduce stage processes records in batches, where all pairs with the 

same key are processed at the same time

• Idempotence of Mapper and Reducer provides fault tolerance

– multiple operations on same input gives same output
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Select word, count(*) from doc group by 

word;
public class WordCount {

public static class Map extends MapReduceBase
implements Mapper<LongWritable, Text, Text, 
IntWritable> {

private final static IntWritable one = new 
IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, 
OutputCollector<Text, IntWritable> output, 
Reporter reporter) throws IOException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());

output.collect(word, one);

}

}

}

public static class Reduce extends 
MapReduceBase implements Reducer<Text, 
IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> 
values, OutputCollector<Text, IntWritable> output, 
Reporter reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {
sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

}

Select word, count(*) from doc group by 

word;
public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

}

}
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Introduction to Hadoop

Owen O’Malley

Yahoo!, Grid Team

owen@yahoo-inc.com

CCA – Oct 2008

Problem

• How do you scale up applications?

– Run jobs processing 100’s of terabytes of data

– Takes 11 days to read on 1 computer

• Need lots of cheap computers

– Fixes speed problem (15 minutes on 1000 computers), but…

– Reliability problems

• In large clusters, computers fail every day

• Cluster size is not fixed

• Need common infrastructure

– Must be efficient and reliable
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CCA – Oct 2008

Solution

• Open Source Apache Project

• Hadoop Core includes:

– Distributed File System - distributes data

– Map/Reduce - distributes application

• Written in Java

• Runs on 

– Linux, Mac OS/X, Windows, and Solaris

– Commodity hardware

CCA – Oct 2008

Commodity Hardware Cluster

• Typically in 2 level architecture

– Nodes are commodity PCs

– 40 nodes/rack

– Uplink from rack is 8 gigabit

– Rack-internal is 1 gigabit
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Distributed File System

• Single namespace for entire cluster

– Managed by a single namenode.

– Files are single-writer and append-only.

– Optimized for streaming reads of large files.

• Files are broken in to large blocks.

– Typically 128 MB

– Replicated to several datanodes, for reliability

• Client talks to both namenode and datanodes

– Data is not sent through the namenode.

– Throughput of file system scales nearly linearly with the number of nodes.

• Access from Java, C, or command line.

CCA – Oct 2008

Data Correctness

• Data is checked with CRC32

• File Creation

– Client computes checksum per 512 byte

– DataNode stores the checksum 

• File access

– Client retrieves the data and checksum from DataNode

– If Validation fails, Client tries other replicas

• Periodic Validation 
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Map/Reduce features

• Java and C++ APIs

– In Java use Objects, while in C++ bytes

• Each task can process data sets larger than RAM

• Automatic re-execution on failure

– In a large cluster, some nodes are always slow or flaky

– Framework re-executes failed tasks

• Locality optimizations

– Map-Reduce queries HDFS for locations of input data

– Map tasks are scheduled close to the inputs when possible

CCA – Oct 2008

How is Yahoo using Hadoop?

• We started with building better applications

– Scale up web scale batch applications (search, ads, …)

– Factor out common code from existing systems, so new applications will be easier to 

write

– Manage the many clusters we have more easily

• The mission now includes research support

– Build a huge data warehouse with many Yahoo! data sets

– Couple it with a huge compute cluster and programming models to make using the data 

easy

– Provide this as a service to our researchers

– We are seeing great results!  

• Experiments can be run much more quickly in this environment
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Running Production WebMap

• Search needs a graph of the “known” web

– Invert edges, compute link text, whole graph heuristics

• Periodic batch job using Map/Reduce

– Uses a chain of ~100 map/reduce jobs

• Scale

– 1 trillion edges in graph

– Largest shuffle is 450 TB

– Final output is 300 TB compressed

– Runs on 10,000 cores

– Raw disk used 5 PB

• Written mostly using Hadoop’s C++ interface

CCA – Oct 2008

Hadoop Community

• Apache is focused on project communities
– Users

– Contributors 
• write patches

– Committers
• can commit patches too

– Project Management Committee 
• vote on new committers and releases too

• Apache is a meritocracy 

• Use, contribution, and diversity is growing

– But we need and want more!
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A ⨝ B

• A and B are Hadoop files

– Produce new Hadoop file that is join of A and B

• Reduce-side join

– Send different keys to different reducer

• Map-side join

– Broadcast join

How to join efficiently?

• Sort-Merge join

– Sort tables

– Read both, outputting tuples that join

• Hash join

– Hash function divides into groups

• All keys that can match go into same group

– Groups small enough to fit in memory

• We’ll use both ideas
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Hash Join Revisited

Aardvark
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Deer
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Bird

Bat

Reduce-Side Join

(Chandar’10)
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Map function

• Read tuples

– Write tuples with “tag” 

void map(Text key , Text values ,

OutputCollector <TextPair, TextPair> output ,

Reporter reporter) throws IOException

{

output.collect(new TextPair(key.toString (), tag),

new TextPair(values.toString (), tag));

}

Partition the Data

• Special partition function

– Partition only on key (join attribute)

int getPartition (TextPair key ,

TextPair value , int numPartitions ) {

return (key.getFirst ().hashCode () &

Integer.MAX_VALUE)

% numPartitions ;

}
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Reduce

• Read file

– If first dataset, save

– If second dataset, output matches

• Assumes data sorted

– But Hadoop takes care of this

Reduce

void reduce(TextPair key , Iterator <TextPair> values , OutputCollector <Text , Text > output , Reporter reporter)
throws IOException {

ArrayList <Text > T1 = new ArrayList <Text >();

Text tag = key.getSecond ();

TextPair value = null;

while(values.hasNext ()) {

value = values.next ();

if(value.getSecond ().compareTo(tag)==0) {

T1.add(value.getFirst ());

} else {

for(Text val : T1) {

output.collect(key.getFirst (),

new Text(val.toString () + "\t“ +

value.getFirst ().toString ()));

} } } }
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Broadcast Join

(Blanas et al. SIGMOD‘10)

• Map-only algorithm

– Everything done in the “first phase”

– Saves move/sort of data

• Limitation: One dataset must fit in memory

– Copy kept at every mapper

– Mapper(s) then run on large dataset “in place”

– Outputs join

But what about…

• Schema

– Need to know what the data is about

• Queries

– Do you really want to write map-reduce programs?

– Optimization?
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HIVE:

RDBMS on Hadoop

• Limited schema

– Tables

– Primitive types

• Subset of SQL

– Select-Project

– (equi)join

– Group by

• Operations implemented using Map-Reduce

What is Hive? 

• A system for managing and querying structured data built 

on top of Hadoop

• Three main components: 

– MapReduce for execution

– Hadoop Distributed File System for storage

– Metadata in an RDBMS

• Hive QL based on SQL

– Easy for users familiar with SQL
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Hive Architecture

Google BigTable

• Simple data model

• Tables distributed

– “row keys”

• Transactional consistency only on a per-row basis
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Google Bigtable

• Multi-version

– Each row timestamped

• Three-level location 

hierarchy

– Claim:  “B-tree like”


