

Multivalued Dependencies

The *multivalued dependency* $X \rightarrow \rightarrow Y$ holds in a relation *R* if whenever we have two tuples of *R* that agree in all the attributes of *X*, then we can swap their *Y* components and get two new tuples that are also in *R*.

Example 2 Subsequences
$$\mathbf{K} = \mathbf{K}$$
 and $\beta \subseteq \mathbf{K}$. The multivalued dependency
 $\alpha \rightarrow \rightarrow \beta$
holds on R if in any legal relation $r(R)$, for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:
 $t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$
 $t_3[\beta] = t_1[\beta]$
 $t_3[R - \beta] = t_2[R - \beta]$
 $t_4[R - \beta] = t_1[R - \beta]$
Note that since the behavior of Z and W are identical it follows that
 $\alpha \rightarrow \rightarrow \beta$ implies $\alpha \rightarrow \rightarrow R - \beta$
Subsequences T is the subsequence of R is th

PURDUE

Department of Computer Science

71

MVD -- Tabular representation

• Tabular representation of $\alpha \rightarrow \beta$

	α	β	$R - \alpha - \beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 a_i$	$a_{i+1}\ldots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$a_{j+1} \dots a_n$

Database	System	Concepts -	7 th	Edition

©Silberschatz, Korth and Sudarshan

Use of Multivalued Dependencies

- We use multivalued dependencies in two ways:
 - 1. To test relations to **determine** whether they are legal under a given set of functional and multivalued dependencies
 - 2. To specify **constraints** on the set of legal relations. We shall concern ourselves *only* with relations that satisfy a given set of functional and multivalued dependencies.
- If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r' that does satisfy the multivalued dependency by adding tuples to r.

7.79

```
Database System Concepts - 7th Edition
```


©Silberschatz, Korth and Sudarshan

While ∃ R_i ∈ S not in 4NF w.r.t. D+ Choose a nontrivial multivalued dependencies on R_i, where A ⇒ R_i ∉ D+, and A ∩ B = Ø S = (S − R_i) ∪ (R_i B) ∪ (A,B)

A	Example			
	$R = (A, B, C, G, H, I)$ $F = \{A \rightarrow B$ $B \rightarrow HI$ $CG \rightarrow H\}$ $R \text{ is not in 4NF since } A \rightarrow Ba$ $Decomposition$ $a) R_1 = (A, B)$ $b) R_2 = (A, C, G, H, I)$ $c) R_3 = (C, G, H)$ $d) R_4 = (A, C, G, I)$ • $A \rightarrow B$ and $B \rightarrow HI \Rightarrow A$ • and hence $A \rightarrow I$ (MVD reference) $R_5 = (A, C, G)$	nd <i>A</i> is not a superkey for <i>R</i> (R_1 is in 4NF) (R_2 is not in 4NF, decompose into (R_3 is in 4NF) (R_4 is not in 4NF, decompose into $A \rightarrow HI$, (MVD transitivity), and estriction to R_4) (R_5 is in 4NF) (R_6 is in 4NF)	R_3 and R_4) R_5 and R_6)	
Database System Concepts - 7 th Edition		7.87	©Silberschatz, Korth and Sudarshan	

Other Design Issues

- Some aspects of database design are not caught by normalization
- Examples of bad database design, to be avoided:
 - Instead of earnings (company_id, year, amount), use
 - earnings_2004, earnings_2005, earnings_2006, etc., all on the schema (company_id, earnings).
 - Above are in BCNF, but make querying across years difficult and needs new table each year
 - company_year (company_id, earnings_2004, earnings_2005, earnings_2006)
 - Also in BCNF, but also makes querying across years difficult and requires new attribute each year.
 - Is an example of a crosstab, where values for one attribute become column names
 - Used in spreadsheets, and in data analysis tools

Database System Concepts - 7th Edition

7.94

©Silberschatz, Korth and Sudarshan

Modeling Temporal Data

- Temporal data have an association time interval during which the data are valid.
- A snapshot is the value of the data at a particular point in time
- Several proposals to extend ER model by adding valid time to
 - attributes, e.g., address of an instructor at different points in time
 - entities, e.g., time duration when a student entity exists
 - relationships, e.g., time during which an instructor was associated with a student as an advisor.
- But no accepted standard
- Adding a temporal component results in functional dependencies like

$ID \rightarrow street, city$

not holding, because the address varies over time

A temporal functional dependency X → Y holds on schema R if the functional dependency X → Y holds on all snapshots for all legal instances r (R).

Database System Concepts - 7th Edition

Modeling Temporal Data (Cont.)

- In practice, database designers may add start and end time attributes to relations
 - E.g., *course(course_id, course_title*) is replaced by

course(course_id, course_title, start, end)

- · Constraint: no two tuples can have overlapping valid times
 - Hard to enforce efficiently
- Foreign key references may be to current version of data, or to data at a point in time
 - E.g., student transcript should refer to course information at the time the course was taken

Database System Concepts - 7th Edition	7.96	©Silberschatz, Korth and Sudarshan

