
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Advanced Locking

Prof. Chris Clifton

9 November 2021

©Silberschatz, Korth and Sudarshan19.27Database System Concepts - 7th Edition

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item

• Goal: Prevent conflicting access

Read-Read is not a conflicting access!

 Solution: Multiple Lock Types

1. exclusive (X) mode. Data item can be both read as well as

written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.

 Lock requests are made to concurrency-control manager. Transaction can

proceed only after request is granted.

©Jan-21 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan19.28Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock is

compatible with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item,

 But if any transaction holds an exclusive on the item no other transaction may

hold any lock on the item.

©Silberschatz, Korth and Sudarshan19.29Database System Concepts - 7th Edition

Lock Conversions

 Two-phase locking protocol with lock conversions:

– Growing Phase:

• can acquire a lock-S on item

• can acquire a lock-X on item

• can convert a lock-S to a lock-X (upgrade)

– Shrinking Phase:

• can release a lock-S

• can release a lock-X

• can convert a lock-X to a lock-S (downgrade)

 This protocol ensures serializability

©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan19.30Database System Concepts - 7th Edition

Automatic Acquisition of Locks

 A transaction Ti issues the standard read/write instruction, without explicit

locking calls.

 The operation read(D) is processed as:

if Ti has a lock on D

then

read(D)

else begin

if necessary wait until no other

transaction has a lock-X on D

grant Ti a lock-S on D;

read(D)

end

©Silberschatz, Korth and Sudarshan19.31Database System Concepts - 7th Edition

Automatic Acquisition of Locks (Cont.)

 The operation write(D) is processed as:

if Ti has a lock-X on D

then
write(D)

else begin

if necessary wait until no other trans. has any lock on D,

if Ti has a lock-S on D
then

upgrade lock on D to lock-X
else

grant Ti a lock-X on D

write(D)
end;

 All locks are released after commit or abort

©Jan-21 Christopher W. Clifton 420

Shared locks

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:

S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

Operations

Lock actions

l-ti(A): lock A in t mode (t is S or X)

u-ti(A): unlock t mode (t is S or X)

Shorthand:

ui(A): unlock whatever modes Ti has locked A

©Jan-21 Christopher W. Clifton 520

What about transactions that read and

write same object?

Option 1: Request exclusive lock

Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

Option 2: Upgrade

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

Locking Rules

• Rule #1 Well formed transactions

• Ti =... l-S1(A) … r1(A) … u1 (A) …

• Ti =... l-X1(A) … w1(A) … u1 (A) …

• Rule #2 Legal scheduler

– S =l-Si(A) … … ui(A) …
no l-Xj(A)

– S = ... l-Xi(A) … … ui(A) …
no l-Xj(A)
no l-Sj(A)

©Jan-21 Christopher W. Clifton 620

A way to summarize Rule #2

• Compatibility matrix

S X

S true false

X false false

Rule # 3 2PL transactions

No change except for upgrades:

(I) If upgrade gets more locks

(e.g., S  {S, X}) then no change!

(II) If upgrade releases read (shared) lock (e.g., S  X)

- can be allowed in growing phase

©Jan-21 Christopher W. Clifton 720

Why this works

• Theorem Rules 1,2,3  Conflict serializable for S/X lock

schedules

• Proof: similar to X locks case

– Detail:

– l-ti(A), l-rj(A) do not conflict if comp(t,r)

– l-ti(A), u-rj(A) do not conflict if comp(t,r)

©Silberschatz, Korth and Sudarshan19.39Database System Concepts - 7th Edition

Implementation of Locking

 A lock manager can be implemented as a separate process

 Transactions can send lock and unlock requests as messages

 The lock manager replies to a lock request by sending a lock grant messages

(or a message asking the transaction to roll back, in case of a deadlock)

• The requesting transaction waits until its request is answered

 The lock manager maintains an in-memory data-structure called a lock table

to record granted locks and pending requests

©Jan-21 Christopher W. Clifton 820

Lock table:

Conceptually

A 

B
C



...

Lock info for B

Lock info for C

If null, object is unlocked

E
v
e
ry

 p
o
ss

ib
le

 o
b
je

ct

©Silberschatz, Korth and Sudarshan19.41Database System Concepts - 7th Edition

Lock Table

 Dark rectangles indicate granted locks, light
colored ones indicate waiting requests

 Lock table also records the type of lock granted
or requested

 New request is added to the end of the queue of
requests for the data item, and granted if it is
compatible with all earlier locks

 Unlock requests result in the request being
deleted, and later requests are checked to see if
they can now be granted

 If transaction aborts, all waiting or granted
requests of the transaction are deleted

• lock manager may keep a list of locks held by
each transaction, to implement this efficiently

©Jan-21 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan19.42Database System Concepts - 7th Edition

Deadlock Handling

 System is deadlocked if there is a set of transactions such that every

transaction in the set is waiting for another transaction in the set.

©Silberschatz, Korth and Sudarshan19.43Database System Concepts - 7th Edition

Deadlock Detection

 Wait-for graph

• Vertices: transactions

• Edge from Ti Tj. : if Ti is waiting for a lock held in conflicting mode byTj

 The system is in a deadlock state if and only if the wait-for graph has a cycle.

 Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

©Jan-21 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan19.44Database System Concepts - 7th Edition

Deadlock Recovery

 When deadlock is detected :

• Some transaction will have to rolled back (made a victim) to break

deadlock cycle.

 Select that transaction as victim that will incur minimum cost

• Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it.

 Partial rollback: Roll back victim transaction only as far as necessary to

release locks that another transaction in cycle is waiting for

 Starvation can happen (why?)

• One solution: oldest transaction in the deadlock set is never chosen as

victim

©Silberschatz, Korth and Sudarshan19.45Database System Concepts - 7th Edition

Deadlock Handling

 Deadlock prevention protocols ensure that the system will never enter into a

deadlock state. Some prevention strategies:

• Require that each transaction locks all its data items before it begins

execution (pre-declaration).

• Impose partial ordering of all data items and require that a transaction can

lock data items only in the order specified by the partial order (graph-based

protocol).

©Jan-21 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan19.46Database System Concepts - 7th Edition

More Deadlock Prevention Strategies

 wait-die scheme — non-preemptive

• Older transaction may wait for younger one to release data item.

• Younger transactions never wait for older ones; they are rolled back instead.

• A transaction may die several times before acquiring a lock

 wound-wait scheme — preemptive

• Older transaction wounds (forces rollback) of younger transaction instead of

waiting for it.

• Younger transactions may wait for older ones.

• Fewer rollbacks than wait-die scheme.

 In both schemes, a rolled back transactions is restarted with its original timestamp.

• Ensures that older transactions have precedence over newer ones, and starvation

is thus avoided.

©Silberschatz, Korth and Sudarshan19.47Database System Concepts - 7th Edition

Deadlock prevention (Cont.)

 Timeout-Based Schemes:

• A transaction waits for a lock only for a specified amount of time. After that,

the wait times out and the transaction is rolled back.

• Ensures that deadlocks get resolved by timeout if they occur

• Simple to implement

• But may roll back transaction unnecessarily in absence of deadlock

 Difficult to determine good value of the timeout interval.

• Starvation is also possible

©Jan-21 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan19.48Database System Concepts - 7th Edition

Graph-Based Protocols

 Graph-based protocols are an alternative to two-phase locking

 Impose a partial ordering  on the set D = {d1, d2 ,..., dh} of all data items.

• If di  dj then any transaction accessing both di and dj must access di

before accessing dj.

• Implies that the set D may now be viewed as a directed acyclic graph,

called a database graph.

 The tree-protocol is a simple kind of graph protocol.

©Silberschatz, Korth and Sudarshan19.49Database System Concepts - 7th Edition

Tree Protocol

 Only exclusive locks are allowed.

 The first lock by Ti may be on any data item. Subsequently, a data Q can be

locked by Ti only if the parent of Q is currently locked by Ti.

 Data items may be unlocked at any time.

 A data item that has been locked and unlocked by Ti cannot subsequently be

relocked by Ti

©Jan-21 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan19.50Database System Concepts - 7th Edition

Graph-Based Protocols (Cont.)

 The tree protocol ensures conflict serializability as well as freedom from deadlock.

 Unlocking may occur earlier in the tree-locking protocol than in the two-phase locking
protocol.

• Shorter waiting times, and increase in concurrency

• Protocol is deadlock-free, no rollbacks are required

 Drawbacks

• Protocol does not guarantee recoverability or cascade freedom

 Need to introduce commit dependencies to ensure recoverability

• Transactions may have to lock data items that they do not access.

 increased locking overhead, and additional waiting time

 potential decrease in concurrency

 Schedules not possible under two-phase locking are possible under the tree protocol,
and vice versa.

What are the objects we lock?

Relation A

Relation B

...

Tuple A

Tuple B

Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

©Jan-21 Christopher W. Clifton 1420

Locking works in any case, but should we

choose small or large objects?

• If we lock large objects (e.g., Relations)

– Need few locks

– Low concurrency

• If we lock small objects (e.g., tuples,fields)

– Need more locks

– More concurrency

©Silberschatz, Korth and Sudarshan19.54Database System Concepts - 7th Edition

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data

granularities, where the small granularities are nested within larger ones

 Can be represented graphically as a tree (but don't confuse with tree-locking

protocol)

 When a transaction locks a node in the tree explicitly, it implicitly locks all the

node's descendants in the same mode.

 Granularity of locking (level in tree where locking is done):

• Fine granularity (lower in tree): high concurrency, high locking overhead

• Coarse granularity (higher in tree): low locking overhead, low concurrency

©Jan-21 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan19.55Database System Concepts - 7th Edition

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

• database

• area

• file

• record

©Silberschatz, Korth and Sudarshan19.58Database System Concepts - 7th Edition

Compatibility Matrix with Intention Lock Modes

 The compatibility matrix for all lock modes is:

©Jan-21 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan19.59Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

 Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any
mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is
currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent
of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node (that
is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently
locked by Ti.

 Observe that locks are acquired in root-to-leaf order, whereas they are released in
leaf-to-root order.

 Lock granularity escalation: in case there are too many locks at a particular level,
switch to higher granularity S or X lock

©Silberschatz, Korth and Sudarshan19.60Database System Concepts - 7th Edition

Insert/Delete Operations and Predicate Reads

 Locking rules for insert/delete operations

• An exclusive lock must be obtained on an item before it is deleted

• A transaction that inserts a new tuple into the database I automatically given
an X-mode lock on the tuple

 Ensures that

• reads/writes conflict with deletes

• Inserted tuple is not accessible by other transactions until the transaction
that inserts the tuple commits

©Jan-21 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan19.61Database System Concepts - 7th Edition

Phantom Phenomenon

 Example of phantom phenomenon.

• A transaction T1 that performs predicate read (or scan) of a relation

 select count(*)
from instructor
where dept_name = 'Physics'

• and a transaction T2 that inserts a tuple while T1 is active but after
predicate read

 insert into instructor values ('11111', 'Feynman', 'Physics', 94000)

(conceptually) conflict in spite of not accessing any tuple in common.

 If only tuple locks are used, non-serializable schedules can result

• E.g. the scan transaction does not see the new instructor, but may read
some other tuple written by the update transaction

 Can also occur with updates

• E.g. update Wu’s department from Finance to Physics

©Silberschatz, Korth and Sudarshan19.62Database System Concepts - 7th Edition

Insert/Delete Operations and Predicate Reads

 Another Example: T1 and T2 both find maximum instructor ID in
parallel, and create new instructors with ID = maximum ID + 1

• Both instructors get same ID, not possible in serializable schedule

 Schedule

©Jan-21 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan19.63Database System Concepts - 7th Edition

Handling Phantoms

 There is a conflict at the data level

• The transaction performing predicate read or scanning the relation is reading

information that indicates what tuples the relation contains

• The transaction inserting/deleting/updating a tuple updates the same information.

• The conflict should be detected, e.g. by locking the information.

 One solution:

• Associate a data item with the relation, to represent the information about what

tuples the relation contains.

• Transactions scanning the relation acquire a shared lock in the data item,

• Transactions inserting or deleting a tuple acquire an exclusive lock on the data

item. (Note: locks on the data item do not conflict with locks on individual tuples.)

 Above protocol provides very low concurrency for insertions/deletions.

©Silberschatz, Korth and Sudarshan19.64Database System Concepts - 7th Edition

Index Locking To Prevent Phantoms

 Index locking protocol to prevent phantoms

• Requires that every relation must have at least one index.

• A transaction can access tuples only after finding them through one or more
indices on the relation

• A transaction Ti that performs a lookup must lock all the index leaf nodes that it
accesses, in S-mode

 Even if the leaf node does not contain any tuple satisfying the index lookup (e.g.
for a range query, no tuple in a leaf is in the range)

• A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

 Must update all indices to r

 Must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

• The rules of the two-phase locking protocol must be observed

 Guarantees that phantom phenomenon won’t occur

©Jan-21 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan19.65Database System Concepts - 7th Edition

Next-Key Locking to Prevent Phantoms

 Index-locking protocol to prevent phantoms locks entire leaf node

• Can result in poor concurrency if there are many inserts

 Next-key locking protocol: provides higher concurrency

• Lock all values that satisfy index lookup (match lookup value, or fall in

lookup range)

• Also lock next key value in index

 even for inserts/deletes

• Lock mode: S for lookups, X for insert/delete/update

 Ensures detection of query conflicts with inserts, deletes and updates

Consider B+-tree leaf nodes as below, with query predicate 7 ≤ X ≤ 16.

Check what happens with next-key locking when inserting: (i) 15 and (ii) 7

