
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Advanced Locking

Prof. Chris Clifton

9 November 2021

©Silberschatz, Korth and Sudarshan19.27Database System Concepts - 7th Edition

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item

• Goal: Prevent conflicting access

Read-Read is not a conflicting access!

 Solution: Multiple Lock Types

1. exclusive (X) mode. Data item can be both read as well as

written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.

 Lock requests are made to concurrency-control manager. Transaction can

proceed only after request is granted.

©Jan-21 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan19.28Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock is

compatible with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item,

 But if any transaction holds an exclusive on the item no other transaction may

hold any lock on the item.

©Silberschatz, Korth and Sudarshan19.29Database System Concepts - 7th Edition

Lock Conversions

 Two-phase locking protocol with lock conversions:

– Growing Phase:

• can acquire a lock-S on item

• can acquire a lock-X on item

• can convert a lock-S to a lock-X (upgrade)

– Shrinking Phase:

• can release a lock-S

• can release a lock-X

• can convert a lock-X to a lock-S (downgrade)

 This protocol ensures serializability

©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan19.30Database System Concepts - 7th Edition

Automatic Acquisition of Locks

 A transaction Ti issues the standard read/write instruction, without explicit

locking calls.

 The operation read(D) is processed as:

if Ti has a lock on D

then

read(D)

else begin

if necessary wait until no other

transaction has a lock-X on D

grant Ti a lock-S on D;

read(D)

end

©Silberschatz, Korth and Sudarshan19.31Database System Concepts - 7th Edition

Automatic Acquisition of Locks (Cont.)

 The operation write(D) is processed as:

if Ti has a lock-X on D

then
write(D)

else begin

if necessary wait until no other trans. has any lock on D,

if Ti has a lock-S on D
then

upgrade lock on D to lock-X
else

grant Ti a lock-X on D

write(D)
end;

 All locks are released after commit or abort

©Jan-21 Christopher W. Clifton 420

Shared locks

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:

S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

Operations

Lock actions

l-ti(A): lock A in t mode (t is S or X)

u-ti(A): unlock t mode (t is S or X)

Shorthand:

ui(A): unlock whatever modes Ti has locked A

©Jan-21 Christopher W. Clifton 520

What about transactions that read and

write same object?

Option 1: Request exclusive lock

Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

Option 2: Upgrade

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

Locking Rules

• Rule #1 Well formed transactions

• Ti =... l-S1(A) … r1(A) … u1 (A) …

• Ti =... l-X1(A) … w1(A) … u1 (A) …

• Rule #2 Legal scheduler

– S =l-Si(A) … … ui(A) …
no l-Xj(A)

– S = ... l-Xi(A) … … ui(A) …
no l-Xj(A)
no l-Sj(A)

©Jan-21 Christopher W. Clifton 620

A way to summarize Rule #2

• Compatibility matrix

S X

S true false

X false false

Rule # 3 2PL transactions

No change except for upgrades:

(I) If upgrade gets more locks

(e.g., S {S, X}) then no change!

(II) If upgrade releases read (shared) lock (e.g., S X)

- can be allowed in growing phase

©Jan-21 Christopher W. Clifton 720

Why this works

• Theorem Rules 1,2,3 Conflict serializable for S/X lock

schedules

• Proof: similar to X locks case

– Detail:

– l-ti(A), l-rj(A) do not conflict if comp(t,r)

– l-ti(A), u-rj(A) do not conflict if comp(t,r)

©Silberschatz, Korth and Sudarshan19.39Database System Concepts - 7th Edition

Implementation of Locking

 A lock manager can be implemented as a separate process

 Transactions can send lock and unlock requests as messages

 The lock manager replies to a lock request by sending a lock grant messages

(or a message asking the transaction to roll back, in case of a deadlock)

• The requesting transaction waits until its request is answered

 The lock manager maintains an in-memory data-structure called a lock table

to record granted locks and pending requests

©Jan-21 Christopher W. Clifton 820

Lock table:

Conceptually

A

B
C

...

Lock info for B

Lock info for C

If null, object is unlocked

E
v
e
ry

 p
o
ss

ib
le

 o
b
je

ct

©Silberschatz, Korth and Sudarshan19.41Database System Concepts - 7th Edition

Lock Table

 Dark rectangles indicate granted locks, light
colored ones indicate waiting requests

 Lock table also records the type of lock granted
or requested

 New request is added to the end of the queue of
requests for the data item, and granted if it is
compatible with all earlier locks

 Unlock requests result in the request being
deleted, and later requests are checked to see if
they can now be granted

 If transaction aborts, all waiting or granted
requests of the transaction are deleted

• lock manager may keep a list of locks held by
each transaction, to implement this efficiently

©Jan-21 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan19.42Database System Concepts - 7th Edition

Deadlock Handling

 System is deadlocked if there is a set of transactions such that every

transaction in the set is waiting for another transaction in the set.

©Silberschatz, Korth and Sudarshan19.43Database System Concepts - 7th Edition

Deadlock Detection

 Wait-for graph

• Vertices: transactions

• Edge from Ti Tj. : if Ti is waiting for a lock held in conflicting mode byTj

 The system is in a deadlock state if and only if the wait-for graph has a cycle.

 Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

©Jan-21 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan19.44Database System Concepts - 7th Edition

Deadlock Recovery

 When deadlock is detected :

• Some transaction will have to rolled back (made a victim) to break

deadlock cycle.

 Select that transaction as victim that will incur minimum cost

• Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it.

 Partial rollback: Roll back victim transaction only as far as necessary to

release locks that another transaction in cycle is waiting for

 Starvation can happen (why?)

• One solution: oldest transaction in the deadlock set is never chosen as

victim

©Silberschatz, Korth and Sudarshan19.45Database System Concepts - 7th Edition

Deadlock Handling

 Deadlock prevention protocols ensure that the system will never enter into a

deadlock state. Some prevention strategies:

• Require that each transaction locks all its data items before it begins

execution (pre-declaration).

• Impose partial ordering of all data items and require that a transaction can

lock data items only in the order specified by the partial order (graph-based

protocol).

©Jan-21 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan19.46Database System Concepts - 7th Edition

More Deadlock Prevention Strategies

 wait-die scheme — non-preemptive

• Older transaction may wait for younger one to release data item.

• Younger transactions never wait for older ones; they are rolled back instead.

• A transaction may die several times before acquiring a lock

 wound-wait scheme — preemptive

• Older transaction wounds (forces rollback) of younger transaction instead of

waiting for it.

• Younger transactions may wait for older ones.

• Fewer rollbacks than wait-die scheme.

 In both schemes, a rolled back transactions is restarted with its original timestamp.

• Ensures that older transactions have precedence over newer ones, and starvation

is thus avoided.

©Silberschatz, Korth and Sudarshan19.47Database System Concepts - 7th Edition

Deadlock prevention (Cont.)

 Timeout-Based Schemes:

• A transaction waits for a lock only for a specified amount of time. After that,

the wait times out and the transaction is rolled back.

• Ensures that deadlocks get resolved by timeout if they occur

• Simple to implement

• But may roll back transaction unnecessarily in absence of deadlock

 Difficult to determine good value of the timeout interval.

• Starvation is also possible

©Jan-21 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan19.48Database System Concepts - 7th Edition

Graph-Based Protocols

 Graph-based protocols are an alternative to two-phase locking

 Impose a partial ordering on the set D = {d1, d2 ,..., dh} of all data items.

• If di dj then any transaction accessing both di and dj must access di

before accessing dj.

• Implies that the set D may now be viewed as a directed acyclic graph,

called a database graph.

 The tree-protocol is a simple kind of graph protocol.

©Silberschatz, Korth and Sudarshan19.49Database System Concepts - 7th Edition

Tree Protocol

 Only exclusive locks are allowed.

 The first lock by Ti may be on any data item. Subsequently, a data Q can be

locked by Ti only if the parent of Q is currently locked by Ti.

 Data items may be unlocked at any time.

 A data item that has been locked and unlocked by Ti cannot subsequently be

relocked by Ti

©Jan-21 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan19.50Database System Concepts - 7th Edition

Graph-Based Protocols (Cont.)

 The tree protocol ensures conflict serializability as well as freedom from deadlock.

 Unlocking may occur earlier in the tree-locking protocol than in the two-phase locking
protocol.

• Shorter waiting times, and increase in concurrency

• Protocol is deadlock-free, no rollbacks are required

 Drawbacks

• Protocol does not guarantee recoverability or cascade freedom

 Need to introduce commit dependencies to ensure recoverability

• Transactions may have to lock data items that they do not access.

 increased locking overhead, and additional waiting time

 potential decrease in concurrency

 Schedules not possible under two-phase locking are possible under the tree protocol,
and vice versa.

What are the objects we lock?

Relation A

Relation B

...

Tuple A

Tuple B

Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

©Jan-21 Christopher W. Clifton 1420

Locking works in any case, but should we

choose small or large objects?

• If we lock large objects (e.g., Relations)

– Need few locks

– Low concurrency

• If we lock small objects (e.g., tuples,fields)

– Need more locks

– More concurrency

©Silberschatz, Korth and Sudarshan19.54Database System Concepts - 7th Edition

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data

granularities, where the small granularities are nested within larger ones

 Can be represented graphically as a tree (but don't confuse with tree-locking

protocol)

 When a transaction locks a node in the tree explicitly, it implicitly locks all the

node's descendants in the same mode.

 Granularity of locking (level in tree where locking is done):

• Fine granularity (lower in tree): high concurrency, high locking overhead

• Coarse granularity (higher in tree): low locking overhead, low concurrency

©Jan-21 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan19.55Database System Concepts - 7th Edition

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

• database

• area

• file

• record

©Silberschatz, Korth and Sudarshan19.58Database System Concepts - 7th Edition

Compatibility Matrix with Intention Lock Modes

 The compatibility matrix for all lock modes is:

©Jan-21 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan19.59Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

 Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any
mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is
currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent
of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node (that
is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently
locked by Ti.

 Observe that locks are acquired in root-to-leaf order, whereas they are released in
leaf-to-root order.

 Lock granularity escalation: in case there are too many locks at a particular level,
switch to higher granularity S or X lock

©Silberschatz, Korth and Sudarshan19.60Database System Concepts - 7th Edition

Insert/Delete Operations and Predicate Reads

 Locking rules for insert/delete operations

• An exclusive lock must be obtained on an item before it is deleted

• A transaction that inserts a new tuple into the database I automatically given
an X-mode lock on the tuple

 Ensures that

• reads/writes conflict with deletes

• Inserted tuple is not accessible by other transactions until the transaction
that inserts the tuple commits

©Jan-21 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan19.61Database System Concepts - 7th Edition

Phantom Phenomenon

 Example of phantom phenomenon.

• A transaction T1 that performs predicate read (or scan) of a relation

 select count(*)
from instructor
where dept_name = 'Physics'

• and a transaction T2 that inserts a tuple while T1 is active but after
predicate read

 insert into instructor values ('11111', 'Feynman', 'Physics', 94000)

(conceptually) conflict in spite of not accessing any tuple in common.

 If only tuple locks are used, non-serializable schedules can result

• E.g. the scan transaction does not see the new instructor, but may read
some other tuple written by the update transaction

 Can also occur with updates

• E.g. update Wu’s department from Finance to Physics

©Silberschatz, Korth and Sudarshan19.62Database System Concepts - 7th Edition

Insert/Delete Operations and Predicate Reads

 Another Example: T1 and T2 both find maximum instructor ID in
parallel, and create new instructors with ID = maximum ID + 1

• Both instructors get same ID, not possible in serializable schedule

 Schedule

©Jan-21 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan19.63Database System Concepts - 7th Edition

Handling Phantoms

 There is a conflict at the data level

• The transaction performing predicate read or scanning the relation is reading

information that indicates what tuples the relation contains

• The transaction inserting/deleting/updating a tuple updates the same information.

• The conflict should be detected, e.g. by locking the information.

 One solution:

• Associate a data item with the relation, to represent the information about what

tuples the relation contains.

• Transactions scanning the relation acquire a shared lock in the data item,

• Transactions inserting or deleting a tuple acquire an exclusive lock on the data

item. (Note: locks on the data item do not conflict with locks on individual tuples.)

 Above protocol provides very low concurrency for insertions/deletions.

©Silberschatz, Korth and Sudarshan19.64Database System Concepts - 7th Edition

Index Locking To Prevent Phantoms

 Index locking protocol to prevent phantoms

• Requires that every relation must have at least one index.

• A transaction can access tuples only after finding them through one or more
indices on the relation

• A transaction Ti that performs a lookup must lock all the index leaf nodes that it
accesses, in S-mode

 Even if the leaf node does not contain any tuple satisfying the index lookup (e.g.
for a range query, no tuple in a leaf is in the range)

• A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

 Must update all indices to r

 Must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

• The rules of the two-phase locking protocol must be observed

 Guarantees that phantom phenomenon won’t occur

©Jan-21 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan19.65Database System Concepts - 7th Edition

Next-Key Locking to Prevent Phantoms

 Index-locking protocol to prevent phantoms locks entire leaf node

• Can result in poor concurrency if there are many inserts

 Next-key locking protocol: provides higher concurrency

• Lock all values that satisfy index lookup (match lookup value, or fall in

lookup range)

• Also lock next key value in index

 even for inserts/deletes

• Lock mode: S for lookups, X for insert/delete/update

 Ensures detection of query conflicts with inserts, deletes and updates

Consider B+-tree leaf nodes as below, with query predicate 7 ≤ X ≤ 16.

Check what happens with next-key locking when inserting: (i) 15 and (ii) 7

