J 7 PURDUE | sumenttcomterscons

UNIVERSITY

CS 44800: Introduction To
Relational Database Systems

Advanced Locking
Prof. Chris Clifton
9 November 2021

Indiana

Genter for
Database

Systems

™

Lock-Based Protocols

= A lock is a mechanism to control concurrent access to a data item
Goal: Prevent conflicting access
Read-Read is not a conflicting access!
= Solution: Multiple Lock Types

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

= Lock requests are made to concurrency-control manager. Transaction can
proceed only after request is granted.

Database System Concepts - 7" Edition 19.27 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Lock-Based Protocols (Cont.)

= | ock-compatibility matrix

S X

true false

X | false | false

= A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

= Any number of transactions can hold shared locks on an item,

= But if any transaction holds an exclusive on the item no other transaction may
hold any lock on the item.

Database System Concepts - 7" Edition 19.28 ©Silberschatz, Korth and Sudarshan

Lock Conversions

= Two-phase locking protocol with lock conversions:
— Growing Phase:
can acquire a lock-S on item
can acquire a lock-X on item
can convert a lock-S to a lock-X (upgrade)
— Shrinking Phase:
can release a lock-S
can release a lock-X
can convert a lock-X to a lock-S (downgrade)
= This protocol ensures serializability

Database System Concepts - 7" Edition 19.29 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Automatic Acquisition of Locks

= A transaction T, issues the standard read/write instruction, without explicit
locking calls.

= The operation read(D) is processed as:
if T, has alock on D

then
read(D)
else begin
if necessary wait until no other
transaction has a lock-X on D
grant T, a lock-S on D;
read(D)
end

Database System Concepts - 7" Edition 19.30 ©Silberschatz, Korth and Sudarshan

Automatic Acquisition of Locks (Cont.)

= The operation write(D) is processed as:

if T, has a lock-Xon D
then
write(D)
else begin
if necessary wait until no other trans. has any lock on D,
if T, has a lock-S on D
then
upgrade lock on D to lock-X
else
grant T; a lock-X on D
write(D)
end;

= All locks are released after commit or abort

Database System Concepts - 7" Edition 19.31 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

27
PURDUE Shared locks

Department of Computer Science

So far:
S = .. 11(A) ri(A) ur(A) ... 12(A) r2(A) uz(A) ...

Do not conflict

Instead:
S=... Is1(A) r1(A) Is2(A) r2(A) usi(A) usz2(A)

27 |
PORDUE Operations

Lock actions

I-ti(A): lock A'in t mode (tis S or X)

u-ti(A): unlock t mode (tis S or X)

Shorthand:
ui(A): unlock whatever modes Ti has locked A

© 2021 Christopher W. Clifton

27 .
PURDUE What about transactions that read and

UNIVERSITY erte same ObJeCt’)

Department of Computer Science

Option 1: Request exclusive lock
Ti= .. I-X2(A) ... r1(A) ... wi(A) ... u(A) ...

Option 2: Upgrade
Ti=... I-S1(A) ... r(A) ... [-Xa2(A) ...w1(A) ...u(A)...

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

5
PORDUE Locking Rules
 Rule #1 Well formed transactions
e Ti=...I-S1(A) ... n(A) ... ur(A) ...
o Ti=...-X12(A) ... wi(A) ... u1(A) ...
* Rule #2 Legal scheduler

-S=..I-S(A) Ui(A) ...
no I-Xj(A)
-S=..I-Xi(A) Ui(A) ...
no I-Xj(A)
no I-Sj(A)

© 2021 Christopher W. Clifton

27
PORDUE A way to summarize Rule #2

Department of Computer Science

« Compatibility matrix

S X
S | true false
X | false | false

a5

PURDUE Rule #3 2Pl transactions

Department of Computer Science

No change except for upgrades:

(I) If upgrade gets more locks
(e.g., S — {S, X}) then no change!

(1) If upgrade releases read (shared) lock (e.g., S — X)
- can be allowed in growing phase

© 2021 Christopher W. Clifton

27 _
PORDYE Why this works

Department of Computer Science

e Theorem Rules 1,2,3 = Conflict serializable for S/X lock
schedules

» Proof: similar to X locks case
— Detail:
— I-ti(A), I-rj(A) do not conflict if comp(t,r)
— I-ti(A), u-rj(A) do not conflict if comp(t,r)

Implementation of Locking

= A lock manager can be implemented as a separate process
= Transactions can send lock and unlock requests as messages

= The lock manager replies to a lock request by sending a lock grant messages
(or a message asking the transaction to roll back, in case of a deadlock)

The requesting transaction waits until its request is answered

= The lock manager maintains an in-memory data-structure called a lock table
to record granted locks and pending requests

Database System Concepts - 7" Edition 19.39 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

2

PURDUE

UNIVERSITY

Department of Computer Science

——— |Lock info for B

(@]lesip-
!

| |Lock info for C

Every possible object
>

Lock table:
Conceptually

If null, object is unlocked

— 17 123
f—lﬂ
] T23 Tl T8 T2
i 1912
] T23
— 14
] T T2
|| 144
|| . granted
— D waiting
T8’
Database System Concepts - 7" Edition

Lock Table

Dark rectangles indicate granted locks, light
colored ones indicate waiting requests

Lock table also records the type of lock granted
or requested

New request is added to the end of the queue of
requests for the data item, and granted if it is
compatible with all earlier locks

Unlock requests result in the request being
deleted, and later requests are checked to see if
they can now be granted

If transaction aborts, all waiting or granted
requests of the transaction are deleted

lock manager may keep a list of locks held by
each transaction, to implement this efficiently

19.41 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Deadlock Handling

= System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.
T Ty

lock-X(B)

read(B)

B:=B-50

write(B)
lock-S(A4)
read(4)
lock-S(B)

lock-X(A)

Database System Concepts - 7" Edition 19.42 ©Silberschatz, Korth and Sudarshan

Deadlock Detection

= Wait-for graph

Vertices: transactions

Edge from T; —>T;. : if T; is waiting for a lock held in conflicting mode byT;
= The system is in a deadlock state if and only if the wait-for graph has a cycle.
= |nvoke a deadlock-detection algorithm periodically to look for cycles.

@‘: " @‘:'Q

Wait-for graph without a cycle Wait-for graph with a cycle

Database System Concepts - 7" Edition 19.43 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Deadlock Recovery

= When deadlock is detected :

Some transaction will have to rolled back (made a victim) to break
deadlock cycle.

= Select that transaction as victim that will incur minimum cost
Rollback -- determine how far to roll back transaction
= Total rollback: Abort the transaction and then restart it.

= Partial rollback: Roll back victim transaction only as far as necessary to
release locks that another transaction in cycle is waiting for

= Starvation can happen (why?)
One solution: oldest transaction in the deadlock set is never chosen as
victim

Database System Concepts - 7" Edition 19.44 ©Silberschatz, Korth and Sudarshan

Deadlock Handling

= Deadlock prevention protocols ensure that the system will never enter into a
deadlock state. Some prevention strategies:

Require that each transaction locks all its data items before it begins
execution (pre-declaration).

Impose partial ordering of all data items and require that a transaction can
lock data items only in the order specified by the partial order (graph-based
protocol).

Database System Concepts - 7" Edition 19.45 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

10

More Deadlock Prevention Strategies

= wait-die scheme — non-preemptive
Older transaction may wait for younger one to release data item.
Younger transactions never wait for older ones; they are rolled back instead.
A transaction may die several times before acquiring a lock

= wound-wait scheme — preemptive

Older transaction wounds (forces rollback) of younger transaction instead of
waiting for it.

Younger transactions may wait for older ones.
Fewer rollbacks than wait-die scheme.
= |n both schemes, a rolled back transactions is restarted with its original timestamp.

Ensures that older transactions have precedence over newer ones, and starvation
is thus avoided.

Database System Concepts - 7" Edition 19.46 ©Silberschatz, Korth and Sudarshan

Deadlock prevention (Cont.)

= Timeout-Based Schemes:

A transaction waits for a lock only for a specified amount of time. After that,
the wait times out and the transaction is rolled back.

Ensures that deadlocks get resolved by timeout if they occur

Simple to implement

But may roll back transaction unnecessarily in absence of deadlock
= Difficult to determine good value of the timeout interval.

Starvation is also possible

Database System Concepts - 7" Edition 19.47 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

11

Graph-Based Protocols

= Graph-based protocols are an alternative to two-phase locking
* |Impose a partial ordering — on the set D = {d,, d, ,..., d,,} of all data items.

If d; — d; then any transaction accessing both d; and d; must access d,
before accessing d.

Implies that the set D may now be viewed as a directed acyclic graph,
called a database graph.

= The tree-protocol is a simple kind of graph protocol.

Database System Concepts - 7" Edition 19.48 ©Silberschatz, Korth and Sudarshan

Tree Protocol

= Only exclusive locks are allowed.

= The first lock by T, may be on any data item. Subsequently, a data Q can be
locked by T, only if the parent of Q is currently locked by T,.

= Data items may be unlocked at any time.

= A data item that has been locked and unlocked by T; cannot subsequently be
relocked by T; 0

ONNC,
QG

© ® ©
@

Database System Concepts - 7" Edition 19.49 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

12

Database System Concepts - 7" Edition

Graph-Based Protocols (Cont.)

The tree protocol ensures conflict serializability as well as freedom from deadlock.

Unlocking may occur earlier in the tree-locking protocol than in the two-phase locking
protocol.

Shorter waiting times, and increase in concurrency
Protocol is deadlock-free, no rollbacks are required
Drawbacks

Protocol does not guarantee recoverability or cascade freedom
= Need to introduce commit dependencies to ensure recoverability

Transactions may have to lock data items that they do not access.
= increased locking overhead, and additional waiting time
= potential decrease in concurrency

Schedules not possible under two-phase locking are possible under the tree protocol,
and vice versa.

19.50 ©Silberschatz, Korth and Sudarshan

a5

PURDUE

UNIVERSITY

Department of Computer Science

What are the objects we lock?

Relation A

Tuple A

Relation B|

Tuple B

Tuple C

DB

DB

Disk
block
A

Disk
block
B

DB

© 2021 Christopher W. Clifton

13

2

PURDUE Locking works in any case, but should we

choose small or large objects?

« |f we lock large objects (e.g., Relations)
— Need few locks
— Low concurrency
« |f we lock small objects (e.g., tuples,fields)
— Need more locks
— More concurrency

Multiple Granularity

= Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger ones

= Can be represented graphically as a tree (but don't confuse with tree-locking
protocol)

= When a transaction locks a node in the tree explicitly, it implicitly locks all the
node's descendants in the same mode.

= Granularity of locking (level in tree where locking is done):
Fine granularity (lower in tree): high concurrency, high locking overhead
Coarse granularity (higher in tree): low locking overhead, low concurrency

Database System Concepts - 7" Edition 19.54 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

14

database
area
file
record

Database System Concepts - 7" Edition

19.55

The levels, starting from the coarsest (top) level are

Example of Granularity Hierarchy

©Silberschatz, Korth and Sudarshan

= The compatibility matrix for all lock modes is:

Compatibility Matrix with Intention Lock Modes

IS IX S SIX X
IS true true true true false
IX true true false false false
S true false true false false
SIX true false false false false
X false false false false false

Database System Concepts - 7" Edition

19.58

©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

15

Multiple Granularity Locking Scheme

= Transaction T, can lock a node Q, using the following rules:
The lock compatibility matrix must be observed.

The root of the tree must be locked first, and may be locked in any
mode.

A node Q can be locked by T, in S or IS mode only if the parent of Q is
currently locked by T; in either IX or IS mode.

A node Q can be locked by T; in X, SIX, or IX mode only if the parent
of Q is currently locked by T, in either IX or SIX mode.

T, can lock a node only if it has not previously unlocked any node (that
is, T; is two-phase).

T, can unlock a node Q only if none of the children of Q are currently
locked by T;.

= Observe that locks are acquired in root-to-leaf order, whereas they are released in
leaf-to-root order.

* Lock granularity escalation: in case there are too many locks at a particular level,
switch to higher granularity S or X lock

Database System Concepts - 7" Edition 19.59 ©Silberschatz, Korth and Sudarshan

Insert/Delete Operations and Predicate Reads

= Locking rules for insert/delete operations

An exclusive lock must be obtained on an item before it is deleted

A transaction that inserts a new tuple into the database | automatically given
an X-mode lock on the tuple

= Ensures that
reads/writes conflict with deletes

Inserted tuple is not accessible by other transactions until the transaction
that inserts the tuple commits

Database System Concepts - 7" Edition 19.60 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

16

Phantom Phenomenon

= Example of phantom phenomenon.
A transaction T1 that performs predicate read (or scan) of a relation

= select count(*)
from instructor _
where dept_name = 'Physics'

and a transaction T2 that inserts a tuple while T1 is active but after
predicate read

= insert into instructor values ('11111', 'Feynman’, 'Physics', 94000)
(conceptually) conflict in spite of not accessing any tuple in common.
= |f only tuple locks are used, non-serializable schedules can result

E.g. the scan transaction does not see the new instructor, but may read
some other tuple written by the update transaction

= Can also occur with updates
E.g. update Wu’s department from Finance to Physics

Database System Concepts - 7" Edition 19.61 ©Silberschatz, Korth and Sudarshan

Insert/Delete Operations and Predicate Reads

= Another Example: T1 and T2 both find maximum instructor ID in
parallel, and create new instructors with ID = maximum ID + 1

Both instructors get same ID, not possible in serializable schedule
= Schedule ™ T2

Read(instructor where
dept_name="Physics’)

Insert Instructor in Physics
Insert Instructor in Comp. Sci.
Commit

Read(instructor where
dept_name="Comp. Sci.)

Database System Concepts - 7" Edition 19.62 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Handling Phantoms

There is a conflict at the data level

The transaction performing predicate read or scanning the relation is reading
information that indicates what tuples the relation contains

The transaction inserting/deleting/updating a tuple updates the same information.
The conflict should be detected, e.g. by locking the information.

One solution:

Associate a data item with the relation, to represent the information about what
tuples the relation contains.

Transactions scanning the relation acquire a shared lock in the data item,

Transactions inserting or deleting a tuple acquire an exclusive lock on the data
item. (Note: locks on the data item do not conflict with locks on individual tuples.)

Above protocol provides very low concurrency for insertions/deletions.

Database System Concepts - 7" Edition 19.63 ©Silberschatz, Korth and Sudarshan

Index Locking To Prevent Phantoms

= |ndex locking protocol to prevent phantoms
Requires that every relation must have at least one index.

A transaction can access tuples only after finding them through one or more
indices on the relation

A transaction T, that performs a lookup must lock all the index leaf nodes that it
accesses, in S-mode

Even if the leaf node does not contain any tuple satisfying the index lookup (e.g.
for a range query, no tuple in a leaf is in the range)

A transaction T, that inserts, updates or deletes a tuple t; in a relation r
Must update all indices to r

Must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

The rules of the two-phase locking protocol must be observed
= Guarantees that phantom phenomenon won’t occur

Database System Concepts - 7" Edition 19.64 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

18

Next-Key Locking to Prevent Phantoms

= |ndex-locking protocol to prevent phantoms locks entire leaf node
Can result in poor concurrency if there are many inserts
= Next-key locking protocol: provides higher concurrency
Lock all values that satisfy index lookup (match lookup value, or fall in
lookup range)
Also lock next key value in index
= even for inserts/deletes
Lock mode: S for lookups, X for insert/delete/update

= Ensures detection of query conflicts with inserts, deletes and updates

Consider B+-tree leaf nodes as below, with query predicate 7 < X < 16.
Check what happens with next-key locking when inserting: (i) 15 and (ii) 7

|3 5 8 1M 1418 24 38 55

19.65

©Silberschatz, Korth and Sudarshan

Database System Concepts - 7" Edition

© 2021 Christopher W. Clifton

19

