

Department of Computer Science

- 1. Course Introduction
 - Intro / history lesson
 - Relational Model, Data Modeling
- Relational Database Queries
 Relational Algebra and SQL
- 4. Storage mechanisms: Rotating and Otherwise
- 5. Indexing and Hashing
- 6. Query Processing
- 7. Query Optimization

8. Handling Failure

Course Outline

(very rough)

- 9. Concurrency Control
- 10. Transaction Management
- 11. Using a Relational Database
 - Views
 - Constraints
 - Triggers
- 12. Big Data and Other Advanced Topics

What goes in to a DBMS?

Department of Computer Science

- Query Compilation
 - Turn a declarative query to procedural execution
 - What is the fastest way to get the result?
- Transaction Management
 - Try to run lots at once
 - Ensure queries don't interfere with each other
- Storage Management
 - Disks are slow how do we get to the data fast?
 - Minimize trips to the disk

Department of Computer Science

Some Goals of a DBMS

Data Integration	 Enhances the accessibility of data, reduces redundancies and inconsistencies
Data Independency	 Simplifies the development of new applications, and the maintainance of existing applications
Centralized Data Control	 Assures data quality, confidentiality, and integrity

