CS 44800: Introduction To Relational Database Systems

Prof. Chris Clifton
26 August 2021
Course Overview

What are we studying?

• Methods to build databases
 – Data modeling
 – Query languages
 We’ll try to cover this quickly – many may know it

• Methods to build DBMSs
 – Storage (safe, persistent)
 – Query (how to make them fast)
 – Transactions (how to make a lot happen at once)
Course Outline
(very rough)

1. Course Introduction
 - Intro / history lesson
 - Relational Model, Data Modeling
2. Relational Database Queries
 - Relational Algebra and SQL
4. Storage mechanisms: Rotating and Otherwise
5. Indexing and Hashing
6. Query Processing
7. Query Optimization
8. Handling Failure
9. Concurrency Control
10. Transaction Management
11. Using a Relational Database
 - Views
 - Constraints
 - Triggers
12. Big Data and Other Advanced Topics

What goes in to a DBMS?

- Query Compilation
 - Turn a declarative query to procedural execution
 - What is the fastest way to get the result?
- Transaction Management
 - Try to run lots at once
 - Ensure queries don’t interfere with each other
- Storage Management
 - Disks are slow – how do we get to the data fast?
 - Minimize trips to the disk
Some Goals of a DBMS

- **Data Integration**
 Enhances the accessibility of data, reduces redundancies and inconsistencies.

- **Data Independency**
 Simplifies the development of new applications, and the maintainance of existing applications.

- **Centralized Data Control**
 Assures data quality, confidentiality, and integrity.

Data Models

- A data model allows one to represent real-world entities of interest to a given set of applications.
- It is thus useful to identify the basic concepts of such representation; relevant concepts include:
 - **Entity**: an "object" of the application domain.
 - **Attribute**: a property of a given entity which meaningful, for the description of the application domain.

 Each entity is thus characterized by one or more attributes; an attribute takes one or more values, referred to as attribute values, from a set of possible values; such set if referred to as attribute domain.