
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

B-Trees, Hash-Based Indexes

Prof. Chris Clifton

30 September 2021

©Silberschatz, Korth and Sudarshan1.60Database System Concepts - 7th Edition

B-Tree Index Files

 Similar to B+-tree, but B-tree allows search-key values to appear only once;

eliminates redundant storage of search keys.

 Search keys in nonleaf nodes appear nowhere else in the B-tree; an

additional pointer field for each search key in a nonleaf node must be

included.

 Generalized B-tree leaf node

 Nonleaf node – pointers Bi are the bucket or file record pointers.

©Jan-21 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan1.61Database System Concepts - 7th Edition

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data

©Silberschatz, Korth and Sudarshan1.62Database System Concepts - 7th Edition

B-Tree Index Files (Cont.)

 Advantages of B-Tree indices:

• May use fewer tree nodes than a corresponding B+-Tree.

• Sometimes possible to find search-key value before reaching leaf node.

 Disadvantages of B-Tree indices:

• Only small fraction of all search-key values are found early

• Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees typically have

greater depth than corresponding B+-Tree

• Insertion and deletion more complicated than in B+-Trees

• Implementation is harder than B+-Trees.

 Typically, advantages of B-Trees do not out weigh disadvantages.

©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan1.63Database System Concepts - 7th Edition

Bulk Loading and Bottom-Up Build

 Inserting entries one-at-a-time into a B+-tree requires  1 IO per entry

• assuming leaf level does not fit in memory

• can be very inefficient for loading a large number of entries at a time (bulk loading)

 Efficient alternative 1:

• sort entries first (using efficient external-memory sort algorithms discussed later in
Section 12.4)

• insert in sorted order

 insertion will go to existing page (or cause a split)

 much improved IO performance, but most leaf nodes half full

 Efficient alternative 2: Bottom-up B+-tree construction

• As before sort entries

• And then create tree layer-by-layer, starting with leaf level

• Implemented as part of bulk-load utility by most database systems

©Silberschatz, Korth and Sudarshan1.64Database System Concepts - 7th Edition

Indexing on Flash

 Random I/O cost much lower on flash

• 20 to 100 microseconds for read/write

 Writes are not in-place, and (eventually) require a more expensive erase

 Optimum page size therefore much smaller

 Bulk-loading still useful since it minimizes page erases

 Write-optimized tree structures (discussed later) have been adapted to minimize page

writes for flash-optimized search trees

©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan1.65Database System Concepts - 7th Edition

Indexing in Main Memory

 Random access in memory

• Much cheaper than on disk/flash

• But still expensive compared to cache read

• Data structures that make best use of cache preferable

• Binary search for a key value within a large B+-tree node results in many cache

misses

 B+- trees with small nodes that fit in cache line are preferable to reduce cache misses

 Key idea: use large node size to optimize disk access, but structure data within a node

using a tree with small node size, instead of using an array.

Hash-based Indexes

©Jan-21 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan1.67Database System Concepts - 7th Edition

Static Hashing

 A bucket is a unit of storage containing one or more entries (a bucket is typically a disk

block).

• we obtain the bucket of an entry from its search-key value using a hash function

 Hash function h is a function from the set of all search-key values K to the set of all

bucket addresses B.

 Hash function is used to locate entries for access, insertion as well as deletion.

 Entries with different search-key values may be mapped to the same bucket; thus

entire bucket has to be searched sequentially to locate an entry.

 In a hash index, buckets store entries with pointers to records

 In a hash file-organization buckets store records

©Silberschatz, Korth and Sudarshan1.68Database System Concepts - 7th Edition

Handling of Bucket Overflows

 Bucket overflow can occur because of

• Insufficient buckets

• Skew in distribution of records. This can occur due to two reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key values

 Although the probability of bucket overflow can be reduced, it cannot be eliminated; it

is handled by using overflow buckets.

©Jan-21 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan1.69Database System Concepts - 7th Edition

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained together in a

linked list.

 Above scheme is called closed addressing (also called closed hashing or open

hashing depending on the book you use)

• An alternative, called

open addressing

(also called open hashing or

closed hashing

depending on the book you use)

which does not use over-flow

buckets, is not suitable for

database applications.

©Silberschatz, Korth and Sudarshan1.71Database System Concepts - 7th Edition

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key.

©Jan-21 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan1.72Database System Concepts - 7th Edition

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed set of B of bucket

addresses. Databases grow or shrink with time.

• If initial number of buckets is too small, and file grows, performance will degrade

due to too much overflows.

• If space is allocated for anticipated growth, a significant amount of space will be

wasted initially (and buckets will be underfull).

• If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new hash function

• Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified dynamically.

©Silberschatz, Korth and Sudarshan1.73Database System Concepts - 7th Edition

Dynamic Hashing

 Periodic rehashing

• If number of entries in a hash table becomes (say) 1.5 times size of hash table,

 create new hash table of size (say) 2 times the size of the previous hash table

 Rehash all entries to new table

 Linear Hashing

• Do rehashing in an incremental manner

 Extendable Hashing

• Tailored to disk based hashing, with buckets shared by multiple hash values

• Doubling of # of entries in hash table, without doubling # of buckets

©Jan-21 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan1.74Database System Concepts - 7th Edition

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization

 Relative frequency of insertions and deletions

 Is it desirable to optimize average access time at the expense of worst-case access

time?

 Expected type of queries:

• Hashing is generally better at retrieving records having a specified value of the key.

• If range queries are common, ordered indices are to be preferred

 In practice:

• PostgreSQL supports hash indices, but discourages use due to poor performance

• Oracle supports static hash organization, but not hash indices

• SQLServer supports only B+-trees

©Silberschatz, Korth and Sudarshan1.75Database System Concepts - 7th Edition

Multiple-Key Access

 Use multiple indices for certain types of queries.

 Example:

select ID

from instructor

where dept_name = “Finance” and salary = 80000

 Possible strategies for processing query using indices on single attributes:

1. Use index on dept_name to find instructors with department name Finance; test
salary = 80000

2. Use index on salary to find instructors with a salary of $80000; test dept_name =
“Finance”.

3. Use dept_name index to find pointers to all records pertaining to the “Finance”
department. Similarly use index on salary. Take intersection of both sets of
pointers obtained.

