J 7 PURDUE | sumenttcomterscons

UNIVERSITY

CS 44800: Introduction To
Relational Database Systems

B-Trees, Hash-Based Indexes
Prof. Chris Clifton
30 September 2021

| ndiana
Genter for
Database

Systems

™

Database System Concepts - 7" Edition

B-Tree Index Files

= Similar to B+-tree, but B-tree allows search-key values to appear only once;
eliminates redundant storage of search keys.

= Search keys in nonleaf nodes appear nowhere else in the B-tree; an
additional pointer field for each search key in a nonleaf node must be
included.

= Generalized B-tree leaf node

‘Pl‘Kl‘Pz‘““Pn-l‘Kn-l‘Pn‘

@

‘ Pl Bl Kl PZ BZ KZ P Bm—l

K1

m-1

(b)
= Nonleaf node — pointers Bi are the bucket or file record pointers.

1.60 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

B-Tree Index File Example

|I|Brandt|l|Caliﬁeri|I|CrickH->|l| El Said |I|Gold | | |H.| Kim |I|Mozart| | |-|->|I|Srinivasan|I|Wu| | | |

Brandt Califieri

... and soon for other records...
record record

B-tree (above) and B+-tree (below) on same data
[[Mozard [T]

Root node

[[Einstein]

i‘--—— Internal nodes

[Brmvasan] [T _T]

Leaf nodes-,

[[Brandt] [Califieri [Crick[}>[[Einstein] [El Said[[[{>[,] Gold [[Katz [] Kim[{>[[Mozart] [Singh [[[}>{[Srinivasan[[Wu [] »~

Database System Concepts - 7" Edition 1.61 ©Silberschatz, Korth and Sudarshan

B-Tree Index Files (Cont.)

= Advantages of B-Tree indices:

May use fewer tree nodes than a corresponding B*-Tree.

Sometimes possible to find search-key value before reaching leaf node.
= Disadvantages of B-Tree indices:

Only small fraction of all search-key values are found early

Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees typically have
greater depth than corresponding B*-Tree

Insertion and deletion more complicated than in B*-Trees
Implementation is harder than B*-Trees.
= Typically, advantages of B-Trees do not out weigh disadvantages.

Database System Concepts - 7" Edition 1.62 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Bulk Loading and Bottom-Up Build

= |nserting entries one-at-a-time into a B*-tree requires > 1 1O per entry

assuming leaf level does not fit in memory

can be very inefficient for loading a large number of entries at a time (bulk loading)
= Efficient alternative 1:

sort entries first (using efficient external-memory sort algorithms discussed later in
Section 12.4)

insert in sorted order
= insertion will go to existing page (or cause a split)
= much improved 10 performance, but most leaf nodes half full
= Efficient alternative 2: Bottom-up B*-tree construction
As before sort entries
And then create tree layer-by-layer, starting with leaf level
Implemented as part of bulk-load utility by most database systems

Database System Concepts - 7" Edition 1.63 ©Silberschatz, Korth and Sudarshan

Indexing on Flash

= Random I/O cost much lower on flash
20 to 100 microseconds for read/write
= Writes are not in-place, and (eventually) require a more expensive erase
= Optimum page size therefore much smaller
= Bulk-loading still useful since it minimizes page erases

= Write-optimized tree structures (discussed later) have been adapted to minimize page
writes for flash-optimized search trees

Database System Concepts - 7" Edition 1.64 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Indexing in Main Memory

= Random access in memory
Much cheaper than on disk/flash
But still expensive compared to cache read
Data structures that make best use of cache preferable

Binary search for a key value within a large B*-tree node results in many cache
misses

= B*- trees with small nodes that fit in cache line are preferable to reduce cache misses

= Key idea: use large node size to optimize disk access, but structure data within a node
using a tree with small node size, instead of using an array.

Database System Concepts - 7" Edition 1.65 ©Silberschatz, Korth and Sudarshan

E PURDUE Department of Computer Science

UNIVERSITY

Hash-based Indexes

© 2021 Christopher W. Clifton

Static Hashing

= A bucket is a unit of storage containing one or more entries (a bucket is typically a disk
block).

we obtain the bucket of an entry from its search-key value using a hash function

= Hash function h is a function from the set of all search-key values K to the set of all
bucket addresses B.

= Hash function is used to locate entries for access, insertion as well as deletion.

= Entries with different search-key values may be mapped to the same bucket; thus
entire bucket has to be searched sequentially to locate an entry.

= In a hash index, buckets store entries with pointers to records
= |n a hash file-organization buckets store records

Database System Concepts - 7" Edition 1.67 ©Silberschatz, Korth and Sudarshan

Handling of Bucket Overflows

= Bucket overflow can occur because of
Insufficient buckets
Skew in distribution of records. This can occur due to two reasons:
= multiple records have same search-key value
= chosen hash function produces non-uniform distribution of key values

= Although the probability of bucket overflow can be reduced, it cannot be eliminated,; it
is handled by using overflow buckets.

Database System Concepts - 7" Edition 1.68 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Handling of Bucket Overflows (Cont.)

= Qverflow chaining — the overflow buckets of a given bucket are chained together in a
linked list.
= Above scheme is called closed addressing (also called closed hashing or open
hashing depending on the book you use)
An alternative, called
. bucket 0
open addressing
(also called open hashing or
closed hashing bucket 1 L L
depending on the book you use)
Wthh does not use OVer-ﬂOW overflow buckets for bucket 1
buckets, is not suitable for bucket 2
database applications.
bucket 3
Database System Concepts - 7" Edition 1.69 ©Silberschatz, Korth and Sudarshan

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key.

bucket 0 bucket 4
12121 | Wu Finance [90000)
76543 | Singh Finance 80000

bucket 1 bucket 5
15151| Mozart Music [40000 76766| Crick Biology |72000
bucket 2 bucket 6
32343| El Said | History |80000] 10101 |Srinivasan |Comp. Sci./65000)
58583| Califieri | History [60000) 45565 |[Katz Comp. Sci.|75000|

83821 [Brandt |Comp. Sci{92000)

bucket 3 bucket 7
22222| Einstein | Physics |95000
33456| Gold Physics [87000
98345| Kim Elec. Eng.|80000

Database System Concepts - 7" Edition 1.71 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Deficiencies of Static Hashing

= |n static hashing, function h maps search-key values to a fixed set of B of bucket
addresses. Databases grow or shrink with time.

If initial number of buckets is too small, and file grows, performance will degrade
due to too much overflows.

If space is allocated for anticipated growth, a significant amount of space will be
wasted initially (and buckets will be underfull).

If database shrinks, again space will be wasted.

= QOne solution: periodic re-organization of the file with a new hash function
Expensive, disrupts normal operations

= Better solution: allow the number of buckets to be modified dynamically.

Database System Concepts - 7" Edition 1.72 ©Silberschatz, Korth and Sudarshan

Dynamic Hashing

= Periodic rehashing
If number of entries in a hash table becomes (say) 1.5 times size of hash table,
= create new hash table of size (say) 2 times the size of the previous hash table
= Rehash all entries to new table
= Linear Hashing
Do rehashing in an incremental manner
= Extendable Hashing
Tailored to disk based hashing, with buckets shared by multiple hash values
Doubling of # of entries in hash table, without doubling # of buckets

Database System Concepts - 7" Edition 1.73 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

Comparison of Ordered Indexing and Hashing

= Cost of periodic re-organization
= Relative frequency of insertions and deletions

= |s it desirable to optimize average access time at the expense of worst-case access
time?

= Expected type of queries:
Hashing is generally better at retrieving records having a specified value of the key.
If range queries are common, ordered indices are to be preferred

= |n practice:
PostgreSQL supports hash indices, but discourages use due to poor performance
Oracle supports static hash organization, but not hash indices
SQLServer supports only B*-trees

Database System Concepts - 7" Edition 1.74 ©Silberschatz, Korth and Sudarshan

Multiple-Key Access

= Use multiple indices for certain types of queries.
= Example:
select ID
from instructor
where dept_name = “Finance” and salary = 80000
= Possible strategies for processing query using indices on single attributes:

1. Use index on dept_name to find instructors with department name Finance; test
salary = 80000

2. Use index on salary to find instructors with a salary of $80000; test dept_name =
“Finance”.

3. Use dept_name index to find pointers to all records pertaining to the “Finance”
department. Similarly use index on salary. Take intersection of both sets of
pointers obtained.

Database System Concepts - 7" Edition 1.75 ©Silberschatz, Korth and Sudarshan

© 2021 Christopher W. Clifton

