
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Failure and Recovery

Prof. Jianguo Wang

11 November 2021

Integrity or correctness of data

• Would like data to be “accurate” or “correct” at all times

EMP

Name

White
Green
Gray

Age

52
3421
1

2

©Jan-21 Christopher W. Clifton 220

Integrity or consistency constraints

• Predicates data must satisfy

• Examples:

– x is key of relation R

– x  y holds in R

– Domain(x) = {Red, Blue, Green}

– a is valid index for attribute x of R

– no employee should make more than twice the average salary

3

Constraints (as we use here) may

not capture “full correctness”

Example 1 Transaction constraints

• When salary is updated,

new salary > old salary

• When account record is deleted,

balance = 0

5

©Jan-21 Christopher W. Clifton 320

Constraints (as we use here) may

not capture “full correctness”

Example 2 Database should reflect real world

DB

Reality

7

Transaction: collection of actions that

preserve consistency

Consistent DB Consistent DB’T

10

©Jan-21 Christopher W. Clifton 420

Big assumption:

If T starts with consistent state + T executes in isolation

 T leaves consistent state

11

Correctness in the case of failure

(informally)

• If we stop running transactions, DB left consistent

• Each transaction sees a consistent DB

12

©Jan-21 Christopher W. Clifton 520

How can constraints be violated?

• Transaction bug

• DBMS bug

• Hardware failure

– e.g., disk crash alters balance of account

• Data sharing

– e.g.: T1: give 10% raise to programmers

T2: change programmers  systems analysts

13

Will not consider:

• How to write correct transactions

• How to write correct DBMS

• Constraint checking & repair

– That is, solutions studied here do not need to know constraints

15

©Jan-21 Christopher W. Clifton 620

Recovery

• First order of business:

– Failure Model

17

Types of Failures

Events Desired

Undesired Expected

Unexpected

18

©Jan-21 Christopher W. Clifton 720

Our failure model

processor

memory disk

CPU

M D

19

Desired events: see product manuals….

Undesired expected events:

System crash

- memory lost

- cpu halts, resets

Undesired Unexpected: Everything else!

that’s it!!

20

©Jan-21 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan19.21Database System Concepts - 7th Edition

Failure Classification

 Transaction failure :

• Logical errors: transaction cannot complete due to some internal error condition

• System errors: the database system must terminate an active transaction due to

an error condition (e.g., deadlock)

 System crash: a power failure or other hardware or software failure causes the

system to crash.

• Fail-stop assumption: non-volatile storage contents are assumed to not be

corrupted by system crash

 Database systems have numerous integrity checks to prevent corruption of disk

data

 Disk failure: a head crash or similar disk failure destroys all or part of disk storage

• Destruction is assumed to be detectable: disk drives use checksums to detect

failures

21

Undesired Unexpected: Everything else!

Examples:

• Disk data is lost

• Memory lost without CPU halt

• Sun goes supernova

22

©Jan-21 Christopher W. Clifton 920

Is this model reasonable?

Approach: Add low level checks + redundancy to increase

probability model holds

E.g., Replicate disk storage (stable store)

Memory parity

CPU checks

23

©Silberschatz, Korth and Sudarshan19.25Database System Concepts - 7th Edition

Storage Structure

 Volatile storage:

• Does not survive system crashes

• Examples: main memory, cache memory

 Nonvolatile storage:

• Survives system crashes

• Examples: disk, tape, flash memory, non-volatile RAM

• But may still fail, losing data

 Stable storage:

• A mythical form of storage that survives all failures

• Approximated by maintaining multiple copies on distinct nonvolatile media

• See book for more details on how to implement stable storage

25

©Jan-21 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan19.26Database System Concepts - 7th Edition

Stable-Storage Implementation

 Maintain multiple copies of each block on separate disks

• copies can be at remote sites to protect against disasters such as fire or flooding.

 Failure during data transfer can still result in inconsistent copies: Block transfer can
result in

• Successful completion

• Partial failure: destination block has incorrect information

• Total failure: destination block was never updated

 Protecting storage media from failure during data transfer (one solution):

• Execute output operation as follows (assuming two copies of each block):

1. Write the information onto the first physical block.

2. When the first write successfully completes, write the same information onto the
second physical block.

3. The output is completed only after the second write successfully completes.

26

©Silberschatz, Korth and Sudarshan19.27Database System Concepts - 7th Edition

Protecting storage media from failure (Cont.)

 Copies of a block may differ due to failure during output operation.

 To recover from failure:

1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.

2. Better solution:

• Record in-progress disk writes on non-volatile storage (Flash, Non-
volatile RAM or special area of disk).

• Use this information during recovery to find blocks that may be
inconsistent, and only compare copies of these.

• Used in hardware RAID systems

2. If either copy of an inconsistent block is detected to have an error
(bad checksum), overwrite it by the other copy. If both have no error,
but are different, overwrite the second block by the first block.

27

©Jan-21 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan19.28Database System Concepts - 7th Edition

Example of Data Access

28

©Silberschatz, Korth and Sudarshan19.29Database System Concepts - 7th Edition

Recovery Algorithms

 Suppose transaction Ti transfers $50 from account A to account B

• Two updates: subtract 50 from A and add 50 to B

 Transaction Ti requires updates to A and B to be output to the database.

• A failure may occur after one of these modifications have been made but before
both of them are made.

• Modifying the database without ensuring that the transaction will commit may
leave the database in an inconsistent state

• Not modifying the database may result in lost updates if failure occurs just after
transaction commits

 Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enough information
exists to recover from failures

2. Actions taken after a failure to recover the database contents to a state that
ensures atomicity, consistency and durability

29

©Jan-21 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan19.30Database System Concepts - 7th Edition

Recovery and Atomicity

 To ensure atomicity despite failures, we first output information describing the

modifications to stable storage without modifying the database itself.

 We study log-based recovery mechanisms in detail

• We first present key concepts

• And then present the actual recovery algorithm

 Less used alternative: shadow-copy and shadow-paging (brief details in

book)

shadow-copy

30

©Silberschatz, Korth and Sudarshan19.31Database System Concepts - 7th Edition

Log-Based Recovery

 A log is a sequence of log records. The records keep information about update
activities on the database.

• The log is kept on stable storage

 When transaction Ti starts, it registers itself by writing a

<Ti start> log record

 Before Ti executes write(X), a log record

<Ti, X, V1, V2>

is written, where V1 is the value of X before the write (the old

value), and V2 is the value to be written to X (the new value).

 When Ti finishes it last statement, the log record <Ti commit> is written.

 Two approaches using logs

• Immediate database modification

• Deferred database modification.

31

©Jan-21 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan19.32Database System Concepts - 7th Edition

Immediate Database Modification

 The immediate-modification scheme allows updates of an uncommitted
transaction to be made to the buffer, or the disk itself, before the transaction
commits

 Update log record must be written before database item is written

• We assume that the log record is output directly to stable storage

• (Will see later that how to postpone log record output to some extent)

 Output of updated blocks to disk can take place at any time before or after
transaction commit

 Order in which blocks are output can be different from the order in which they
are written.

 The deferred-modification scheme performs updates to buffer/disk only at the
time of transaction commit

• Simplifies some aspects of recovery

• But has overhead of storing local copy

32

©Silberschatz, Korth and Sudarshan19.33Database System Concepts - 7th Edition

Transaction Commit

 A transaction is said to have committed when its commit log record is output to

stable storage

• All previous log records of the transaction must have been output already

 Writes performed by a transaction may still be in the buffer when the

transaction commits, and may be output later

33

©Jan-21 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan19.34Database System Concepts - 7th Edition

Immediate Database Modification Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>
<T0, B, 2000, 2050>

A = 950
B = 2050

<T0 commit>

<T1 start>
<T1, C, 700, 600>

C = 600
BB , BC

<T1 commit>
BA

 Note: BX denotes block containing X.

BC output before T1

commits

BA output after T0

commits
34

Recovery

• Previous example – what happens if failure in between (or

during) some of the writes

– Commit hasn’t been written, so transaction hasn’t happened

• Undo logging (Ariadne ~900BCE)

– Restore state to before uncommitted

transaction started

– Log contains information on old state

– “Follow the string” back to before you started

35

©Jan-21 Christopher W. Clifton 1520

Write-Ahead Logging

• Logging must happen before write

– Log captures state before write

– Undo either restores written block to previous state, or contains
same value if write hasn’t occurred

• When commit happens

– All blocks modified by transaction

– Commit Ti written to log

• When undoing

– If commit Ti in log, then ignore log entries for Ti

36

Undo logging

(Immediate modification)

T1: Read (A,t); t  t2 A=B
Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

16
16

<T1, start>
<T1, A, 8>

<T1, commit>

16 <T1, B, 8>

16

37

©Jan-21 Christopher W. Clifton 1620

One “complication”

• Log is first written in memory

• Not written to disk on every action

memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16

BAD STATE
1

38

One “complication”

• Log is first written in memory

• Not written to disk on every action

memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16

BAD STATE
2

<T1, B, 8>
<T1, commit>

..
.

39

©Jan-21 Christopher W. Clifton 1720

Undo logging rules

1. For every action generate undo log record (containing

old value)

2. Before x is modified on disk, log records pertaining to x

must be on disk (write ahead logging: WAL)

3. Before commit is flushed to log, all writes of transaction

must be reflected on disk

40

Recovery rules: Undo logging

• For every Ti with <Ti, start> in log:

– If <Ti,commit> or <Ti,abort>

in log, do nothing

– else For all <Ti, X, v> in log:

write (X, v)

output (X)

Write <Ti, abort> to log

IS THIS CORRECT??
41

©Jan-21 Christopher W. Clifton 1820

Recovery rules: Undo logging

1. Let S = set of transactions with <Ti, start> in log, but no
<Ti, commit> (or <Ti, abort>) record in log

2. For each <Ti, X, v> in log, in reverse order (latest 
earliest) do:

if Ti  S then
write (X, v)
output (X)

3. For each Ti  S do
write <Ti, abort> to log

42

©Silberschatz, Korth and Sudarshan19.44Database System Concepts - 7th Edition

Concurrency Control and Recovery

 With concurrent transactions, all transactions share a single disk buffer and a

single log

• A buffer block can have data items updated by one or more transactions

 We assume that if a transaction Ti has modified an item, no other transaction

can modify the same item until Ti has committed or aborted

• i.e., the updates of uncommitted transactions should not be visible to other

transactions

 Otherwise, how to perform undo if T1 updates A, then T2 updates A and

commits, and finally T1 has to abort?

• Can be ensured by obtaining exclusive locks on updated items and holding

the locks till end of transaction (strict two-phase locking)

 Log records of different transactions may be interspersed in the log.

44

©Jan-21 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan19.45Database System Concepts - 7th Edition

Undo and Redo Operations

 Undo and Redo of Transactions

• undo(Ti) -- restores the value of all data items updated by Ti to their old

values, going backwards from the last log record for Ti

 Each time a data item X is restored to its old value V a special log record

<Ti , X, V> is written out

 When undo of a transaction is complete, a log record

<Ti abort> is written out.

• redo(Ti) -- sets the value of all data items updated by Ti to the new values,

going forward from the first log record for Ti

 No logging is done in this case

45

©Silberschatz, Korth and Sudarshan19.46Database System Concepts - 7th Edition

Recovering from Failure

 When recovering after failure:

• Transaction Ti needs to be undone if the log

 Contains the record <Ti start>,

 But does not contain either the record <Ti commit> or <Ti abort>.

• Transaction Ti needs to be redone if the log

 Contains the records <Ti start>

 And contains the record <Ti commit> or <Ti abort>

46

©Jan-21 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan19.47Database System Concepts - 7th Edition

Recovering from Failure (Cont.)

 Suppose that transaction Ti was undone earlier and the <Ti abort> record

was written to the log, and then a failure occurs,

 On recovery from failure transaction Ti is redone

• Such a redo redoes all the original actions of transaction Ti including the

steps that restored old values

 Known as repeating history

 Seems wasteful, but simplifies recovery greatly

47

©Silberschatz, Korth and Sudarshan19.48Database System Concepts - 7th Edition

Immediate DB Modification Recovery Example

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

(a) undo (T0): B is restored to 2000 and A to 1000, and log records
<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out

(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is restored to 700.
Log records <T1, C, 700>, <T1, abort> are written out.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050

respectively. Then C is set to 600

48

©Jan-21 Christopher W. Clifton 2120

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);

Read(B,t); t t2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>
<T1, commit>

output

16

49

Redo logging rules

1. For every action, generate redo log record (containing

new value)

2. Before X is modified on disk (DB), all log records for

transaction that modified X (including commit) must be

on disk

3. Flush log at commit

50

©Jan-21 Christopher W. Clifton 2220

Recovery rules: Redo logging

• For every Ti with <Ti, commit> in log:

– For all <Ti, X, v> in log:

Write(X, v)

Output(X)

IS THIS CORRECT??

51

Recovery rules: Redo logging

1. Let S = set of transactions with <Ti, commit> in log

2. For each <Ti, X, v> in log, in forward order (earliest 

latest) do:

– if Ti  S then Write(X, v)

Output(X) optional

52

