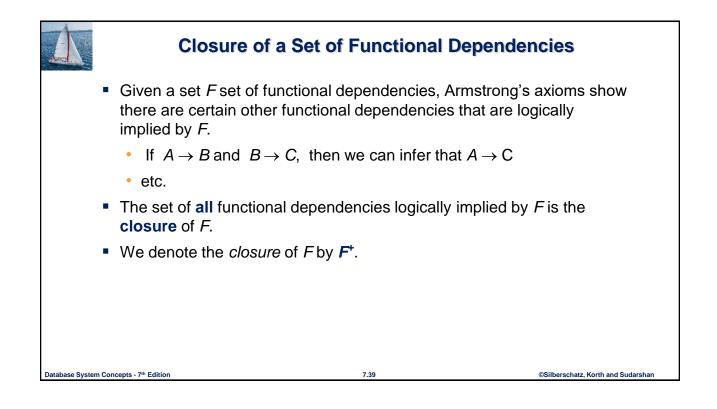
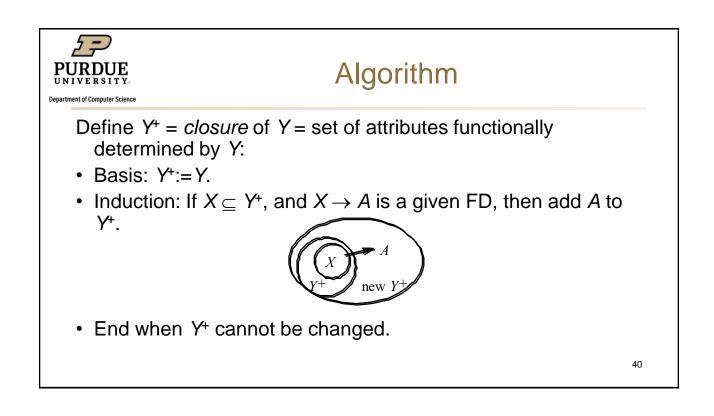


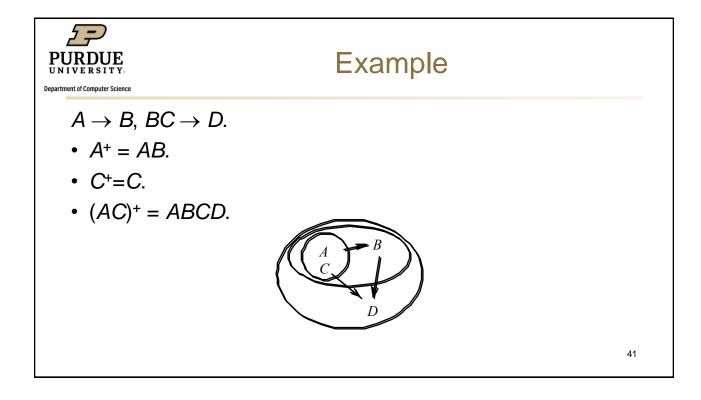
FDs: Armstrong's Axioms

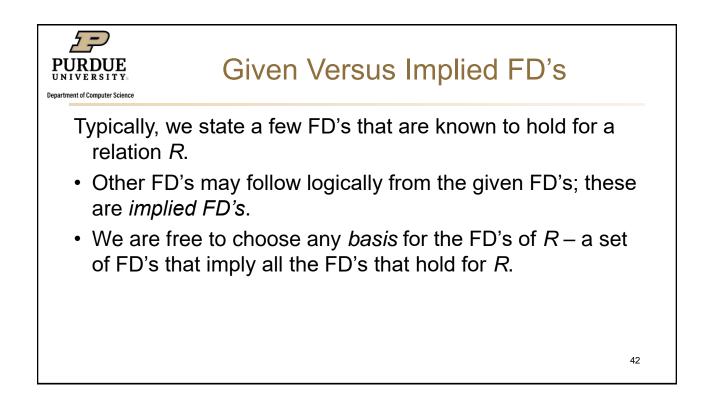
- Reflexivity:
 - $\text{ If } \{B_1, B_2, \, ..., \, B_m\} \subseteq \{A_1, A_2, \, ..., \, A_n\} \Longrightarrow A_1A_2 ^{\cdots}A_n \to B_1B_2 ^{\cdots}B_m$
 - Also called "trivial FDs"
- Augmentation:
 - $\begin{array}{c} A_1 A_2 \cdots A_n \rightarrow B_1 B_2 \cdots B_m \Rightarrow \\ A_1 A_2 \cdots A_n C_1 C_2 \cdots C_k \rightarrow B_1 B_2 \cdots B_m C_1 C_2 \cdots C_k \end{array}$
- Transitivity:
 - $-A_1A_2 \cdots A_n \rightarrow B_1B_2 \cdots B_m \text{ and } B_1B_2 \cdots B_m \rightarrow C_1C_2 \cdots C_k \Longrightarrow A_1A_2 \cdots A_n \rightarrow C_1C_2 \cdots C_k$

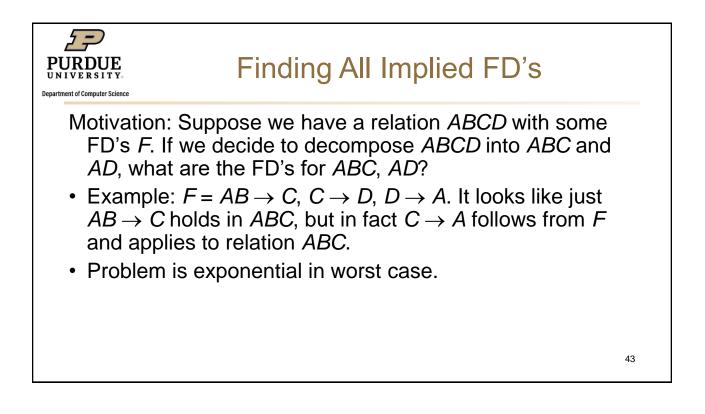
38









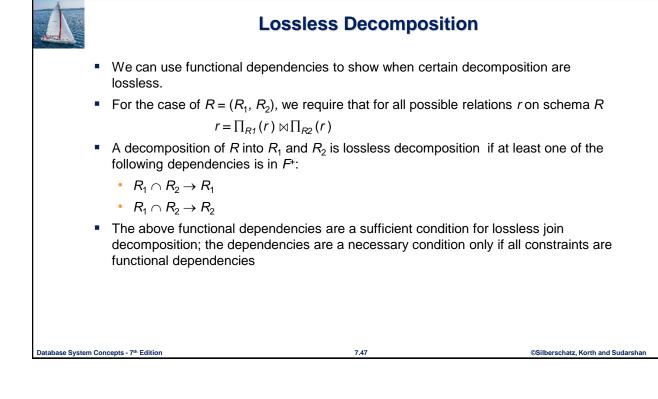


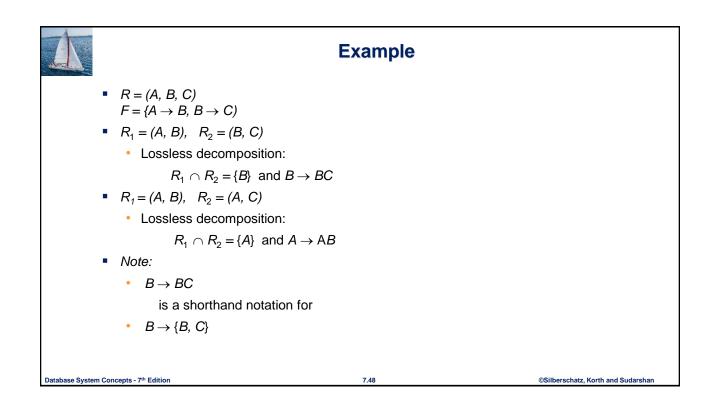
Example

$F = AB \rightarrow C, C \rightarrow D, D \rightarrow A$. What FD's follow?

- $A^+ = A; B^+ = B$ (nothing).
- $C^+=ACD$ (add $C \rightarrow A$).
- $D^+=AD$ (nothing new).
- $(AB)^+=ABCD$ (add $AB \rightarrow D$; skip all supersets of AB).
- (*BC*)⁺=*ABCD* (nothing new; skip all supersets of *BC*).
- $(BD)^+=ABCD$ (add $BD \rightarrow C$; skip all supersets of BD).
- (*AC*)⁺=*ACD*; (*AD*)⁺=*AD*; (*CD*)⁺=*ACD* (nothing new).
- (ACD)⁺=ACD (nothing new).
- All other sets contain AB, BC, or BD, so skip.
- Thus, the only interesting FD's that follow from *F* are: $C \rightarrow A$, $AB \rightarrow D$, $BD \rightarrow C$.

44





Dependency Preservation

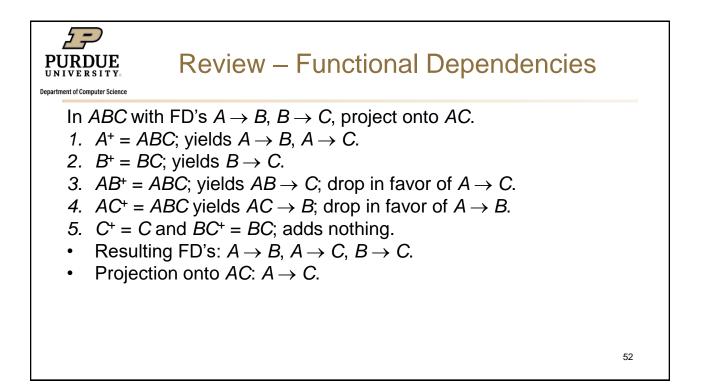
- Testing functional dependency constraints each time the database is updated can be costly
- It is useful to design the database in a way that constraints can be tested efficiently.
- If testing a functional dependency can be done by considering just one relation, then the cost of testing this constraint is low
- When decomposing a relation it is possible that it is no longer possible to do the testing without having to perform a Cartesian Produced.
- A decomposition that makes it computationally hard to enforce functional dependency is said to be NOT dependency preserving.

Database System Concepts - 7th Edition

7.49

Dependency Preservation Example

 Consider a schema: <i>dept_advisor(s_ID, i_ID,</i> With function dependencie <i>i_ID → dept_name</i> 			
s_ID, dept_name $\rightarrow i$	_ID		
In the above design we are forced to repeat the department name once for each time an instructor participates in a <i>dept_advisor</i> relationship.			
 To fix this, we need to dece 	 To fix this, we need to decompose dept_advisor 		
 Any decomposition will not include all the attributes in 			
s_ID, dept_name \rightarrow i_	s_ID, dept_name $\rightarrow i_ID$		
 Thus, the composition NOT be dependency preserving 			
Database System Concepts - 7th Edition	7.50	©Silberschatz, Korth and Sudarshan	

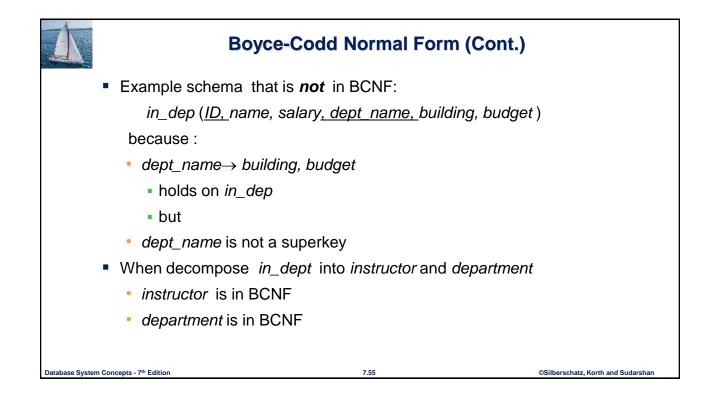


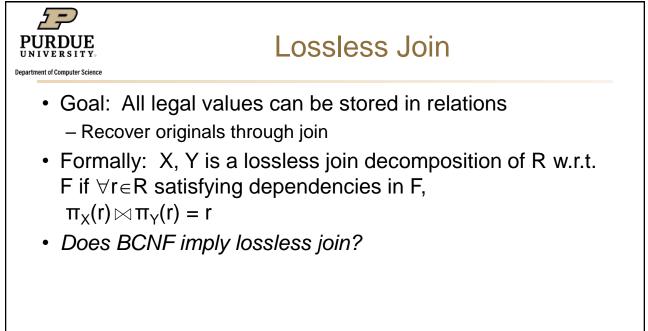
Normalization

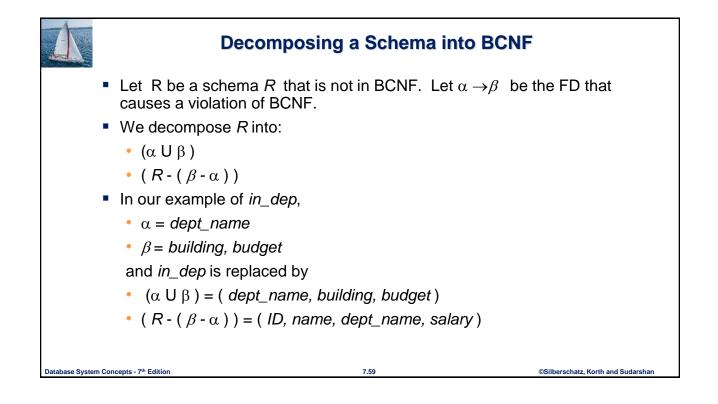
Goal = BCNF = Boyce-Codd Normal Form = all FD's follow from the fact "key → everything."
Formally, *R* is in BCNF if for every nontrivial FD for *R*, say X → A, then X is a superkey.
– "Nontrivial" = right-side attribute not in left side.

Why?

- 1. Guarantees no redundancy due to FD's.
- 2. Guarantees no *update anomalies* = one occurrence of a fact is updated, not all.
- 3. Guarantees no *deletion anomalies* = valid fact is lost when tuple is deleted.







PURDUE UNIVERSITY

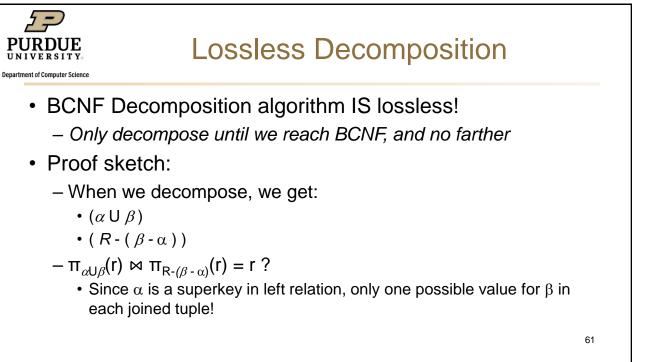
Decomposition to Reach BCNF

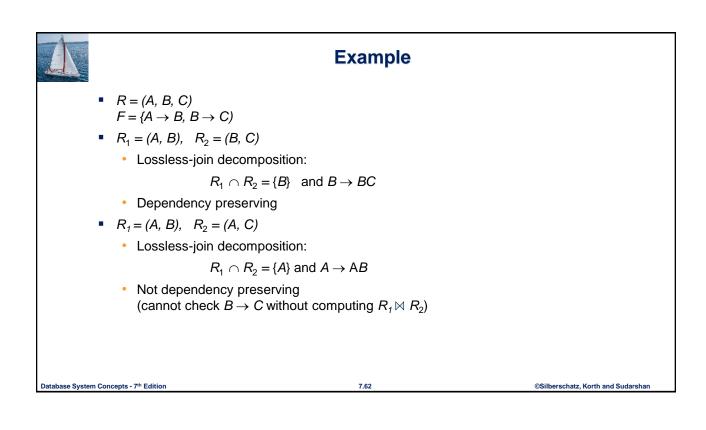
Department of Computer Science

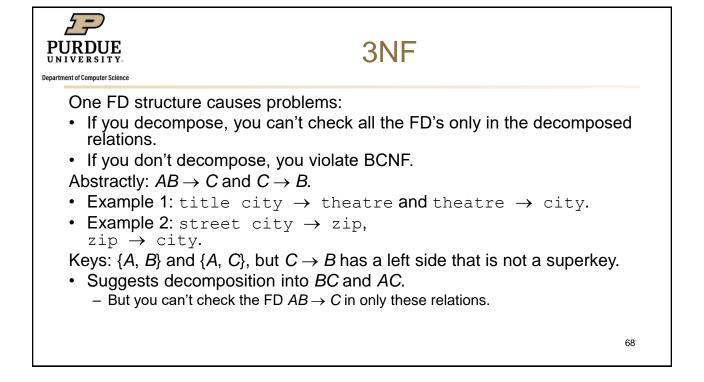
Setting: relation *R*, given FD's *F*.

Suppose relation *R* has BCNF violation $X \rightarrow B$.

- We need only look among FD's of F for a BCNF violation, not those that follow from F.
- Proof: If $Y \rightarrow A$ is a BCNF violation and follows from *F*, then the computation of Y^+ used at least one FD $X \rightarrow B$ from *F*.
 - X must be a subset of Y.
 - Thus, if Y is not a superkey, X cannot be a superkey either, and $X \rightarrow B$ is also a BCNF violation.
- In our example of *in_dep*,
 - $-\alpha = dept_name$
 - $-\beta$ = building, budget
 - and *in_dep* is replaced by
 - $(\alpha \cup \beta) = (dept_name, building, budget)$
 - $-(R (\beta \alpha)) = (ID, name, dept_name, salary)$



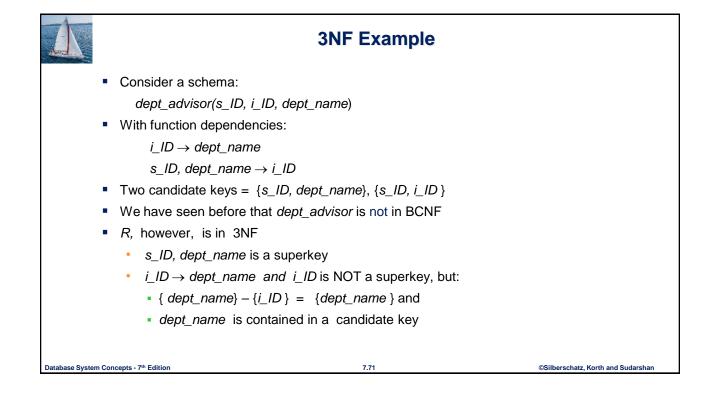


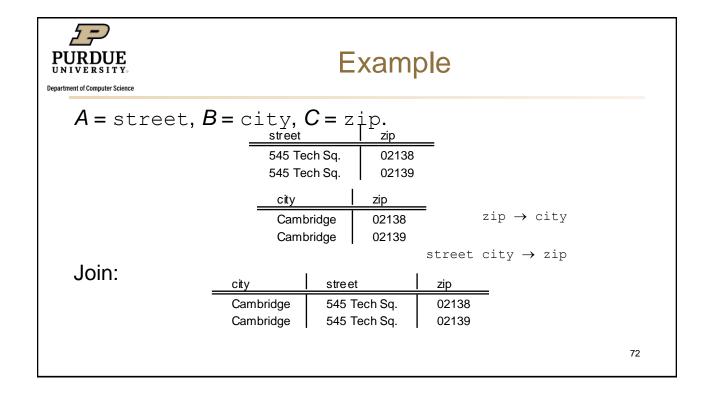


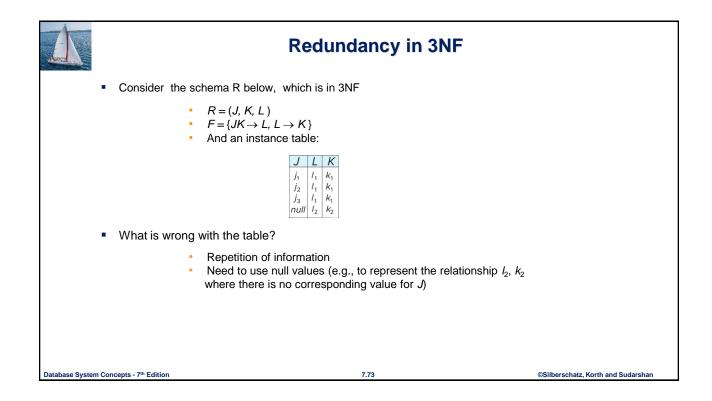
"Elegant" Workaround

Define the problem away.

- A relation *R* is in 3NF iff (if and only if) for every nontrivial FD X → A, either:
 - 1. X is a superkey, or
 - 2. *A* is *prime* = member of at least one key.
- Thus, the canonical problem goes away: you don't have to decompose because all attributes are prime.







What 3NF Gives You

There are two important properties of a decomposition:

- 1. We should be able to recover from the decomposed relations the data of the original.
 - Recovery involves projection and join, which we shall defer until we've discussed relational algebra.
- 2. We should be able to check that the FD's for the original relation are satisfied by checking the projections of those FD's in the decomposed relations.
- Without proof, we assert that it is always possible to decompose into BCNF and satisfy (1).
- Also without proof, we can decompose into 3NF and satisfy both (1) and (2).
- But it is not possible to decompose into BNCF and get both (1) and (2).
 - Street-city-zip is an example of this point.

