
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Prof. Chris Clifton

7 September 2021

Functional Dependencies

37

Functional Dependencies

X A = assertion about a relation R that whenever two
tuples agree on all the attributes of X, then they must also
agree on attribute A

• Examples:

– PurdueID  ClassYear

– Credits  ClassYear

– Name Address Year Credits Major  PurdueID
• May be true, but not something that we want to say must hold!

©Jan-21 Christopher W. Clifton 220

38

FDs: Armstrong’s Axioms

• Reflexivity:

– If {B1, B2, …, Bm}  {A1, A2, …, An}  A1A2∙∙∙An  B1B2∙∙∙Bm

– Also called “trivial FDs”

• Augmentation:

– A1A2∙∙∙An  B1B2∙∙∙Bm 

A1A2∙∙∙AnC1C2∙∙∙Ck  B1B2∙∙∙BmC1C2∙∙∙Ck

• Transitivity:

– A1A2∙∙∙An  B1B2∙∙∙Bm and B1B2∙∙∙Bm  C1C2∙∙∙Ck  A1A2∙∙∙An  C1C2∙∙∙Ck

©Silberschatz, Korth and Sudarshan7.39Database System Concepts - 7th Edition

Closure of a Set of Functional Dependencies

 Given a set F set of functional dependencies, Armstrong’s axioms show

there are certain other functional dependencies that are logically

implied by F.

• If A  B and B  C, then we can infer that A  C

• etc.

 The set of all functional dependencies logically implied by F is the

closure of F.

 We denote the closure of F by F+.

©Jan-21 Christopher W. Clifton 320

Algorithm

Define Y+ = closure of Y = set of attributes functionally
determined by Y:

• Basis: Y+:=Y.

• Induction: If X  Y+, and X  A is a given FD, then add A to
Y+.

• End when Y+ cannot be changed.

X
A

Y new Y+ +

40

41

Example

A  B, BC  D.

• A+ = AB.

• C+=C.

• (AC)+ = ABCD.

A

C

B

D

©Jan-21 Christopher W. Clifton 420

42

Given Versus Implied FD’s

Typically, we state a few FD’s that are known to hold for a

relation R.

• Other FD’s may follow logically from the given FD’s; these

are implied FD’s.

• We are free to choose any basis for the FD’s of R – a set

of FD’s that imply all the FD’s that hold for R.

43

Finding All Implied FD’s

Motivation: Suppose we have a relation ABCD with some
FD’s F. If we decide to decompose ABCD into ABC and
AD, what are the FD’s for ABC, AD?

• Example: F = AB  C, C  D, D  A. It looks like just
AB  C holds in ABC, but in fact C  A follows from F
and applies to relation ABC.

• Problem is exponential in worst case.

©Jan-21 Christopher W. Clifton 520

Example

F = AB  C, C  D, D  A. What FD’s follow?

• A+ = A; B+=B (nothing).

• C+=ACD (add C  A).

• D+=AD (nothing new).

• (AB)+=ABCD (add AB  D; skip all supersets of AB).

• (BC)+=ABCD (nothing new; skip all supersets of BC).

• (BD)+=ABCD (add BD  C; skip all supersets of BD).

• (AC)+=ACD; (AD)+=AD; (CD)+=ACD (nothing new).

• (ACD)+=ACD (nothing new).

• All other sets contain AB, BC, or BD, so skip.
• Thus, the only interesting FD’s that follow from F are:

C  A, AB  D, BD  C.

44

©Silberschatz, Korth and Sudarshan7.47Database System Concepts - 7th Edition

Lossless Decomposition

 We can use functional dependencies to show when certain decomposition are

lossless.

 For the case of R = (R1, R2), we require that for all possible relations r on schema R

r = R1 (r) R2 (r)

 A decomposition of R into R1 and R2 is lossless decomposition if at least one of the

following dependencies is in F+:

• R1  R2  R1

• R1  R2  R2

 The above functional dependencies are a sufficient condition for lossless join

decomposition; the dependencies are a necessary condition only if all constraints are

functional dependencies

©Jan-21 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan7.48Database System Concepts - 7th Edition

Example

 R = (A, B, C)

F = {A  B, B  C)

 R1 = (A, B), R2 = (B, C)

• Lossless decomposition:

R1  R2 = {B} and B  BC

 R1 = (A, B), R2 = (A, C)

• Lossless decomposition:

R1  R2 = {A} and A  AB

 Note:

• B  BC

is a shorthand notation for

• B  {B, C}

©Silberschatz, Korth and Sudarshan7.49Database System Concepts - 7th Edition

Dependency Preservation

 Testing functional dependency constraints each time the database is

updated can be costly

 It is useful to design the database in a way that constraints can be

tested efficiently.

 If testing a functional dependency can be done by considering just one

relation, then the cost of testing this constraint is low

 When decomposing a relation it is possible that it is no longer possible

to do the testing without having to perform a Cartesian Produced.

 A decomposition that makes it computationally hard to enforce

functional dependency is said to be NOT dependency preserving.

©Jan-21 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan7.50Database System Concepts - 7th Edition

Dependency Preservation Example

 Consider a schema:

dept_advisor(s_ID, i_ID, department_name)

 With function dependencies:

i_ID  dept_name

s_ID, dept_name  i_ID

 In the above design we are forced to repeat the department name once for each time

an instructor participates in a dept_advisor relationship.

 To fix this, we need to decompose dept_advisor

 Any decomposition will not include all the attributes in

s_ID, dept_name  i_ID

 Thus, the composition NOT be dependency preserving

52

Review – Functional Dependencies

In ABC with FD’s A  B, B  C, project onto AC.

1. A+ = ABC; yields A  B, A  C.

2. B+ = BC; yields B  C.

3. AB+ = ABC; yields AB  C; drop in favor of A  C.

4. AC+ = ABC yields AC  B; drop in favor of A  B.

5. C+ = C and BC+ = BC; adds nothing.

• Resulting FD’s: A  B, A  C, B  C.

• Projection onto AC: A  C.

©Jan-21 Christopher W. Clifton 820

Normalization

Goal = BCNF = Boyce-Codd Normal Form =
all FD’s follow from the fact “key  everything.”
• Formally, R is in BCNF if for every nontrivial FD for R, say X  A, then

X is a superkey.
– “Nontrivial” = right-side attribute not in left side.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one occurrence of a fact is
updated, not all.

3. Guarantees no deletion anomalies = valid fact is lost when tuple is
deleted.

53

©Silberschatz, Korth and Sudarshan7.55Database System Concepts - 7th Edition

Boyce-Codd Normal Form (Cont.)

 Example schema that is not in BCNF:

in_dep (ID, name, salary, dept_name, building, budget)

because :

• dept_name building, budget

 holds on in_dep

 but

• dept_name is not a superkey

 When decompose in_dept into instructor and department

• instructor is in BCNF

• department is in BCNF

©Jan-21 Christopher W. Clifton 920

Lossless Join

• Goal: All legal values can be stored in relations

– Recover originals through join

• Formally: X, Y is a lossless join decomposition of R w.r.t.

F if rR satisfying dependencies in F,

πX(r) πY(r) = r

• Does BCNF imply lossless join?

58

©Silberschatz, Korth and Sudarshan7.59Database System Concepts - 7th Edition

Decomposing a Schema into BCNF

 Let R be a schema R that is not in BCNF. Let   be the FD that
causes a violation of BCNF.

 We decompose R into:

• ( U )

• (R - ( - ))

 In our example of in_dep,

•  = dept_name

•  = building, budget

and in_dep is replaced by

• ( U ) = (dept_name, building, budget)

• (R - ( - )) = (ID, name, dept_name, salary)

©Jan-21 Christopher W. Clifton 1020

60

Decomposition to Reach BCNF

Setting: relation R, given FD’s F.
Suppose relation R has BCNF violation X  B.
• We need only look among FD’s of F for a BCNF violation, not those that follow from

F.
• Proof: If Y  A is a BCNF violation and follows from F, then the computation of Y+

used at least one FD X  B from F.
– X must be a subset of Y.
– Thus, if Y is not a superkey, X cannot be a superkey either, and X  B is also a BCNF

violation.

• In our example of in_dep,
–  = dept_name
–  = building, budget
and in_dep is replaced by
– ( U ) = (dept_name, building, budget)
– (R - ( - )) = (ID, name, dept_name, salary)

Lossless Decomposition

• BCNF Decomposition algorithm IS lossless!

– Only decompose until we reach BCNF, and no farther

• Proof sketch:

– When we decompose, we get:

• ( U )

• (R - ( - ))

– πU(r) ⋈ πR-( - )(r) = r ?

• Since  is a superkey in left relation, only one possible value for  in

each joined tuple!

61

©Jan-21 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan7.62Database System Concepts - 7th Edition

Example

 R = (A, B, C)

F = {A  B, B  C)

 R1 = (A, B), R2 = (B, C)

• Lossless-join decomposition:

R1  R2 = {B} and B  BC

• Dependency preserving

 R1 = (A, B), R2 = (A, C)

• Lossless-join decomposition:

R1  R2 = {A} and A  AB

• Not dependency preserving

(cannot check B  C without computing R1 R2)

3NF

One FD structure causes problems:

• If you decompose, you can’t check all the FD’s only in the decomposed
relations.

• If you don’t decompose, you violate BCNF.

Abstractly: AB  C and C  B.

• Example 1: title city  theatre and theatre  city.

• Example 2: street city  zip,
zip  city.

Keys: {A, B} and {A, C}, but C  B has a left side that is not a superkey.

• Suggests decomposition into BC and AC.
– But you can’t check the FD AB  C in only these relations.

68

©Jan-21 Christopher W. Clifton 1220

69

“Elegant” Workaround

Define the problem away.

• A relation R is in 3NF iff (if and only if)
for every nontrivial FD X  A, either:

1. X is a superkey, or

2. A is prime = member of at least one key.

• Thus, the canonical problem goes away: you don’t have
to decompose because all attributes are prime.

©Silberschatz, Korth and Sudarshan7.71Database System Concepts - 7th Edition

3NF Example

 Consider a schema:

dept_advisor(s_ID, i_ID, dept_name)

 With function dependencies:

i_ID  dept_name

s_ID, dept_name  i_ID

 Two candidate keys = {s_ID, dept_name}, {s_ID, i_ID }

 We have seen before that dept_advisor is not in BCNF

 R, however, is in 3NF

• s_ID, dept_name is a superkey

• i_ID  dept_name and i_ID is NOT a superkey, but:

 { dept_name} – {i_ID } = {dept_name } and

 dept_name is contained in a candidate key

©Jan-21 Christopher W. Clifton 1320

72

Example

A = street, B = city, C = zip.

Join:

street zip

545 Tech Sq. 02138

545 Tech Sq. 02139

city zip

Cambridge 02138

Cambridge 02139

city street zip

Cambridge 545 Tech Sq. 02138

Cambridge 545 Tech Sq. 02139

zip  city

street city  zip

©Silberschatz, Korth and Sudarshan7.73Database System Concepts - 7th Edition

Redundancy in 3NF

 Consider the schema R below, which is in 3NF

 What is wrong with the table?

• R = (J, K, L)

• F = {JK  L, L  K }

• And an instance table:

• Repetition of information

• Need to use null values (e.g., to represent the relationship l2, k2

where there is no corresponding value for J)

©Jan-21 Christopher W. Clifton 1420

What 3NF Gives You

There are two important properties of a decomposition:

1. We should be able to recover from the decomposed relations the data of the
original.

– Recovery involves projection and join, which we shall defer until we’ve discussed relational
algebra.

2. We should be able to check that the FD’s for the original relation are satisfied by
checking the projections of those FD’s in the decomposed relations.

• Without proof, we assert that it is always possible to decompose into BCNF and
satisfy (1).

• Also without proof, we can decompose into 3NF and satisfy both (1) and (2).

• But it is not possible to decompose into BNCF and get both (1) and (2).
– Street-city-zip is an example of this point.

74

3NF Synthesis

• Given a canonical cover FC for F

• Schema S = 

•  A→BFc

– If there is no Ri  S such that AB  Ri

• S = S + AB

• If there is no Ri  S containing a candidate key for R

– S = S + (any candidate key for R)

76

