Features of Good Relational Designs

- Suppose we combine instructor and department into in_dep, which represents the natural join on the relations instructor and department

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>salary</th>
<th>dept_name</th>
<th>building</th>
<th>budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>95000</td>
<td>Physics</td>
<td>Watson</td>
<td>70000</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>90000</td>
<td>Finance</td>
<td>Painter</td>
<td>120000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>60000</td>
<td>History</td>
<td>Painter</td>
<td>50000</td>
</tr>
<tr>
<td>45655</td>
<td>Katz</td>
<td>75000</td>
<td>Comp. Sci.</td>
<td>Taylor</td>
<td>100000</td>
</tr>
<tr>
<td>98345</td>
<td>Kim</td>
<td>80000</td>
<td>Elec. Eng.</td>
<td>Taylor</td>
<td>85000</td>
</tr>
<tr>
<td>76766</td>
<td>Crick</td>
<td>72000</td>
<td>Biology</td>
<td>Watson</td>
<td>90000</td>
</tr>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>65000</td>
<td>Comp. Sci.</td>
<td>Taylor</td>
<td>100000</td>
</tr>
<tr>
<td>58383</td>
<td>Califiri</td>
<td>62000</td>
<td>History</td>
<td>Painter</td>
<td>50000</td>
</tr>
<tr>
<td>83621</td>
<td>Brandt</td>
<td>92000</td>
<td>Comp. Sci.</td>
<td>Taylor</td>
<td>100000</td>
</tr>
<tr>
<td>15451</td>
<td>Mozari</td>
<td>40000</td>
<td>Music</td>
<td>Packard</td>
<td>80000</td>
</tr>
<tr>
<td>33436</td>
<td>Gold</td>
<td>87000</td>
<td>Physics</td>
<td>Watson</td>
<td>70000</td>
</tr>
<tr>
<td>76543</td>
<td>Singh</td>
<td>80000</td>
<td>Finance</td>
<td>Painter</td>
<td>120000</td>
</tr>
</tbody>
</table>

- There is repetition of information
- Need to use null values (if we add a new department with no instructors)
Decomposition

- The only way to avoid the repetition-of-information problem in the in_dep schema is to decompose it into two schemas – instructor and department schemas.
- Not all decompositions are good. Suppose we decompose

 \[\text{employee}(ID, \text{name}, \text{street}, \text{city}, \text{salary}) \]

 into

 \[\text{employee1}(ID, \text{name}) \]
 \[\text{employee2}(\text{name}, \text{street}, \text{city}, \text{salary}) \]

 The problem arises when we have two employees with the same name

- The next slide shows how we lose information -- we cannot reconstruct the original employee relation -- and so, this is a lossy decomposition.
Lossless Decomposition

- Let R be a relation schema and let R_1 and R_2 form a decomposition of R
 - That is $R = R_1 \cup R_2$
- We say that the decomposition is a **lossless decomposition** if there is no loss of information by replacing R with the two relation schemas $R_1 \cup R_2$
- Formally,
 $$\Pi_{R_1}(r) \times \Pi_{R_2}(r) = r$$
- And, conversely a decomposition is lossy if
 $$r \subset \Pi_{R_1}(r) \times \Pi_{R_2}(r) = r$$

Example of Lossless Decomposition

- Decomposition of $R = (A, B, C)$
 - $R_1 = (A, B)$
 - $R_2 = (B, C)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

- $r = (\alpha, \beta)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>B</td>
</tr>
</tbody>
</table>

- $\Pi_{A,B}(r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\Pi_{A}(r) \times \Pi_{B}(r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\Pi_{B,C}(r)$
Normalization Theory

- Decide whether a particular relation R is in “good” form.
- In the case that a relation R is not in “good” form, decompose it into set of relations \{R_1, R_2, \ldots, R_n\} such that
 - Each relation is in good form
 - The decomposition is a lossless decomposition
- Our theory is based on:
 - Functional dependencies
 - Multivalued dependencies

Functional Dependencies

- There are usually a variety of constraints (rules) on the data in the real world.
- For example, some of the constraints that are expected to hold in a university database are:
 - Students and instructors are uniquely identified by their ID.
 - Each student and instructor has only one name.
 - Each instructor and student is (primarily) associated with only one department.
 - Each department has only one value for its budget, and only one associated building.
Functional Dependencies

$X \rightarrow A$ = assertion about a relation R that whenever two tuples agree on all the attributes of X, then they must also agree on attribute A

Why do we care?

Knowing functional dependencies provides a formal mechanism to divide up relations (normalization)

- Saves space
- Prevents storing data that violates dependencies

Functional Dependencies Definition

- Let R be a relation schema

 $\alpha \subseteq R$ and $\beta \subseteq R$

- The functional dependency $\alpha \rightarrow \beta$

 holds on R if and only if for any legal relations $r(R)$, whenever any two tuples t_1 and t_2 of r agree on the attributes α, they also agree on the attributes β. That is,

 $$t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$$

- Example: Consider $r(A, B)$ with the following instance of r.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- On this instance, $B \rightarrow A$ hold; $A \rightarrow B$ does NOT hold,
Keys of Relations

K is a key for relation R if:
1. \(K \rightarrow \text{all attributes of } R \). (Uniqueness)
2. For no proper subset of K is (1) true. (Minimality)
 • If K at least satisfies (1), then K is a superkey.

Conventions
• Pick one key; underline key attributes in the relation schema.
• \(X \), etc., represent sets of attributes; A etc., represent single attributes.
• No set formers in FD’s, e.g., ABC instead of \{A, B, C\}.

Keys and Functional Dependencies

- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

 \(\text{in_dep (ID, name, salary, dept_name, building, budget)} \).

We expect these functional dependencies to hold:

 \(\text{dept_name} \rightarrow \text{building} \)
 \(\text{ID} \rightarrow \text{building} \)

but would not expect the following to hold:

 \(\text{dept_name} \rightarrow \text{salary} \)
Example

<table>
<thead>
<tr>
<th>Lastname</th>
<th>Firstname</th>
<th>Student ID</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td></td>
<td>Key</td>
<td>Superkey</td>
</tr>
<tr>
<td>(2 attributes)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: There are alternate keys

- Keys are \{Lastname, Firstname\} and \{StudentID\}

Use of Functional Dependencies

- We use functional dependencies to:
 - To test relations to see if they are legal under a given set of functional dependencies.
 - If a relation \(r \) is legal under a set \(F \) of functional dependencies, we say that \(r \) satisfies \(F \).
 - To specify constraints on the set of legal relations
 - We say that \(F \) holds on \(R \) if all legal relations on \(R \) satisfy the set of functional dependencies \(F \).
 - Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.
 - For example, a specific instance of instructor may, by chance, satisfy \(\text{name} \rightarrow \text{ID} \).
Trivial Functional Dependencies

- A functional dependency is **trivial** if it is satisfied by all instances of a relation

- Example:
 - \(ID, \text{name} \rightarrow ID \)
 - \(\text{name} \rightarrow \text{name} \)

- In general, \(\alpha \rightarrow \beta \) is trivial if \(\beta \subseteq \alpha \)

Who Determines Keys/FD’s?

- We could assert a key \(K \).
 - Then the only FD’s asserted are that \(K \rightarrow A \) for every attribute \(A \).
 - No surprise: \(K \) is then the only key for those FD’s, according to the formal definition of “key.”

- Or, we could assert some FD’s and **deduce** one or more keys by the formal definition.

- Rule of thumb: FD’s either come from keyness, many-1 relationship, or from physics.
 - E.g., “no two courses can meet in the same room at the same time” yields \(\text{room} \rightarrow \text{time} \rightarrow \text{course} \).
Functional Dependencies (FD’s) and Many-One Relationships

- Consider \(R(A_1, \ldots, A_n) \) and \(X \) is a key then \(X \rightarrow Y \) for any attributes \(Y \) in \(A_1, \ldots, A_n \) even if they overlap with \(X \). Why?
- Suppose \(R \) is used to represent a many → one relationship:
 \(E_1 \) entity set → \(E_2 \) entity set
 where \(X \) key for \(E_1 \), \(Y \) key for \(E_2 \),
 Then, \(X \rightarrow Y \) holds,
 And \(Y \rightarrow X \) does not hold unless the relationship is one-one.
- What about many-many relationships?

Inferring FD’s

And this is important because …
- When we talk about improving relational designs, we often need to ask “does this FD hold in this relation?”

Given FD’s \(X_1 \rightarrow A_1, X_2 \rightarrow A_2, \ldots, X_n \rightarrow A_n \), does FD \(Y \rightarrow B \) necessarily hold in the same relation?
- Start by assuming two tuples agree in \(Y \). Use given FD’s to infer other attributes on which they must agree. If \(B \) is among them, then yes, else no.
Closure of a Set of Functional Dependencies

- Given a set F set of functional dependencies, there are certain other functional dependencies that are logically implied by F.
 - If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
 - etc.
- The set of all functional dependencies logically implied by F is the closure of F.
- We denote the closure of F by F^+.

Algorithm

Define $Y^+ = \text{closure of } Y$ = set of attributes functionally determined by Y:
- Basis: $Y^+ := Y$.
- Induction: If $X \subseteq Y^+$, and $X \rightarrow A$ is a given FD, then add A to Y^+.
- End when Y^+ cannot be changed.
Example

\[A \rightarrow B, \ BC \rightarrow D. \]

- \(A^+ = AB. \)
- \(C^+ = C. \)
- \((AC)^+ = ABCD. \)

Given Versus Implied FD’s

Typically, we state a few FD’s that are known to hold for a relation \(R. \)
- Other FD’s may follow logically from the given FD’s; these are implied FD’s.
- We are free to choose any basis for the FD’s of \(R \) – a set of FD’s that imply all the FD’s that hold for \(R. \)
Finding All Implied FD’s

Motivation: Suppose we have a relation $ABCD$ with some FD’s F. If we decide to decompose $ABCD$ into ABC and AD, what are the FD’s for ABC, AD?

• Example: $F = AB \rightarrow C$, $C \rightarrow D$, $D \rightarrow A$. It looks like just $AB \rightarrow C$ holds in ABC, but in fact $C \rightarrow A$ follows from F and applies to relation ABC.

• Problem is exponential in worst case.

Example

$F = AB \rightarrow C$, $C \rightarrow D$, $D \rightarrow A$. What FD’s follow?

• $A^+ = A$; $B^+ = B$ (nothing).
• $C^+ = ACD$ (add $C \rightarrow A$).
• $D^+ = AD$ (nothing new).
• $(AB)^+ = ABCD$ (add $AB \rightarrow D$; skip all supersets of AB).
• $(BC)^+ = ABCD$ (nothing new; skip all supersets of BC).
• $(BD)^+ = ABCD$ (add $BD \rightarrow C$; skip all supersets of BD).
• $(AC)^+ = ACD$; $(AD)^+ = AD$; $(CD)^+ = ACD$ (nothing new).
• $(ACD)^+ = ACD$ (nothing new).

• All other sets contain AB, BC, or BD, so skip.

• Thus, the only interesting FD’s that follow from F are: $C \rightarrow A$, $AB \rightarrow D$, $BD \rightarrow C$.
Lossless Decomposition

- We can use functional dependencies to show when certain decomposition are lossless.
- For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R
 $$ r = \prod_{R_1} (r) \times \prod_{R_2} (r) $$
- A decomposition of R into R_1 and R_2 is lossless decomposition if at least one of the following dependencies is in F^+:
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$
- The above functional dependencies are a sufficient condition for lossless join decomposition; the dependencies are a necessary condition only if all constraints are functional dependencies.

Example

- $R = (A, B, C)$
 $F = \{A \rightarrow B, B \rightarrow C\}$
- $R_1 = (A, B), \ R_2 = (B, C)$
 - Lossless decomposition:
 $$ R_1 \cap R_2 = \{B\} \text{ and } B \rightarrow BC $$
- $R_1 = (A, B), \ R_2 = (A, C)$
 - Lossless decomposition:
 $$ R_1 \cap R_2 = \{A\} \text{ and } A \rightarrow AB $$
- **Note:**
 - $B \rightarrow BC$ is a shorthand notation for
 - $B \rightarrow \{B, C\}$
Dependency Preservation

- Testing functional dependency constraints each time the database is updated can be costly.
- It is useful to design the database in a way that constraints can be tested efficiently.
- If testing a functional dependency can be done by considering just one relation, then the cost of testing this constraint is low.
- When decomposing a relation it is possible that it is no longer possible to do the testing without having to perform a Cartesian Product.
- A decomposition that makes it computationally hard to enforce functional dependency is said to be NOT dependency preserving.

Dependency Preservation Example

- Consider a schema:

```sql
dept_advisor(s_ID, i_ID, department_name)
```

- With function dependencies:

```sql
i_ID \rightarrow dept_name
s_ID, dept_name \rightarrow i_ID
```

- In the above design we are forced to repeat the department name once for each time an instructor participates in a `dept_advisor` relationship.
- To fix this, we need to decompose `dept_advisor`
- Any decomposition will not include all the attributes in `s_ID, dept_name \rightarrow i_ID`
- Thus, the composition NOT be dependency preserving.
FDs: Armstrong’s Axioms

• Reflexivity:
 – If \(\{B_1, B_2, \ldots, B_m\} \subseteq \{A_1, A_2, \ldots, A_n\} \Rightarrow A_1 A_2 \cdots A_n \rightarrow B_1 B_2 \cdots B_m \)
 – Also called “trivial FDs”

• Augmentation:
 – \(A_1 A_2 \cdots A_n \rightarrow B_1 B_2 \cdots B_m \Rightarrow A_1 A_2 \cdots A_n C_1 C_2 \cdots C_k \rightarrow B_1 B_2 \cdots B_m C_1 C_2 \cdots C_k \)

• Transitivity:
 – \(A_1 A_2 \cdots A_n \rightarrow B_1 B_2 \cdots B_m \) and \(B_1 B_2 \cdots B_m \rightarrow C_1 C_2 \cdots C_k \Rightarrow A_1 A_2 \cdots A_n \rightarrow C_1 C_2 \cdots C_k \)