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Distributed Database: Why?

• Performance

– Put the data close to the users

– Parallelism

• Resilience

– Fewer failures that can stop users from reaching the data

• Redundancy

– Copies of data to handle media failure

– Continue running when one machine fails

3

Distributed Database: Challenges

• Where’s the data?
– Easy – Block ID includes location

– Hard – What if we want to move the data?

– Harder – What about multiple copies of the data?

• Query Processing
– Query may access multiple sites

• Concurrency Control
– Distributed transactions

• Failure/recovery
– Is the fail-stop model still appropriate?

4
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Distributed Transaction:  Locking
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Distributed Locking

• All locks are local!

– Checking for locks happens at each site

– Wait happens at each site

– No need to communicate

• 2-phase locking is global

– No transaction component can release a lock until all are done 

obtaining the lock

• We get serializability!
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Distributed Concurrency Control:  

Challenges

• Deadlock detection/prevention: Deadlocks can be 

distributed

– T1 waiting for T2 at site A

– T2 waiting for T1 at site B

• Replication

– What if we want to have multiple copies of the data?

8

Replicated Data

• Thus far, we have assumed that there is only a single copy of 

each data item.

• This copy is placed at one of the sites, which is responsible 

for concurrency control and recovery for that data item.

• However, for a data item that is accessed often from different 

sites, this could lead to a significant amount of 

communication.

• Moreover, when a sites fails, all data residing on that site 

becomes unavailable.

9
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Replication

• To increase availability of data, and to reduce communication for 
remote data, data can be replicated.

• From the user’s point of view, replication (like distribution, physical 
and logical organization of data), should be transparent.

• I.e. the user should not be aware that some (or all) data items are 
replicated, and should see no difference in performance.

• The user can be a programmer or an end user.

10

1 Copy Serializability

• The correctness definition for replicated databases is therefore 
that it should behave as though all transactions are executed in a 
serial manner on a single copy database.

• This is the notion of one copy serializability, I.e. 1SR.

• The user must be given a one copy view of the database.

• How is this achieved?

• Read-only is easy. For writes we must manage carefully!

11
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Write-All approach

• This is the obvious first solution: 
– Reads can be satisfied by any copy in the system,

– Writes must all modify every copy of the data item being written.

• This is a very effective solution – it completely eliminates the 
problem of multiple copies, and gives each txn the correct view.
– Lock each copy

– If someone reading a copy, we can’t get write lock

• Very poor in terms of performance and progress:
– Failures have a crippling effect on transactions!

12
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Quorum Consensus Protocol

Quorum consensus protocol for locking

 Each site is assigned a weight;  let S be the total of all site weights

 Choose two values read quorum QR and write quorum QW

• Such that    Qr + Qw > S     and    2 * Qw >  S

 Each read must lock enough replicas that the sum of the site weights

is ≥ Qr

 Each write must lock enough replicas that the sum of the site weights 

is ≥ Qw

 Can choose Qr and Qw to tune relative overheads on reads and writes
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Google Spanner

• SQL-based query language

– MapReduce based execution

• (Dyamically) replicated data

– High availability

• Read/write consistency

– Timestamp based serializability

Google Spanner Data Replication

• Data divided into Zones

– Replication across zones

– May be thousands of servers in a zone

– Placement in a zone dynamic (location proxies)

– Similar to BigTable (Servers)

• Internally: tablet abstraction

– Maps (key, timestamp)  string

• Lock Table at each replica
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Overview

• Feature: Lock-free distributed read transactions

• Property: External consistency of distributed transactions

– First system at global scale

• Implementation: Integration of concurrency control, 
replication, and 2PC

– Correctness and performance

• Enabling technology: TrueTime

– Interval-based global time

Wilson Hsieh OSDI 2012 17

Concurrency Control

• Three types of transactions

– Read-write

– Snapshot Transactions

• Pre-declared as having no writes

– Snapshot reads

• Weak consistency guarantee

• “sufficiently up to date”

• All data timestamped

Wilson Hsieh OSDI 2012 18
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Consistency:  Read/Write

• Read-write uses strict two-phase locking
– Locks held until commit

• Timestamp assigned after all locks acquired
– Timestamps assigned by “leader” at each site

– All writes have that timestamp

• Replicas track “safe time” – maximum timestamp at which a replica 
is up-to-date
– Infinite if no transactions operating on object

– Otherwise timestamp of first completed (but not committed) transaction

• Serializability is timestamp order
– If T2 starts after T1 commits, must have later timestamp

Consistency: Reads

• Read transactions assigned a timestamp

– Only read data written before that timestamp

– Can’t read data if timestamp > safe time

Twrite < Tread < Tsafe

• What to assign as a timestamp?

– Current time means replicas may be past “safe”

– Can assign “old” timestamps, more replicas are okay

– Read transactions may serialize before they actually start
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Version Management

• Transactions that write use strict 2PL

– Each transaction T is assigned a timestamp s

– Data written by T is timestamped with s

Wilson Hsieh OSDI 2012 21
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Timestamps, Global Clock

• Strict two-phase locking for write transactions

• Assign timestamp while locks are held

Wilson Hsieh OSDI 2012 23

T

Pick s = now()

Acquired locks Release locks
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Timestamp Invariants

Wilson Hsieh OSDI 2012 24

• Timestamp order == commit order

• Timestamp order respects global wall-time order 

T2

T3

T4

T1

TrueTime

• “Global wall-clock time” with bounded uncertainty

Wilson Hsieh OSDI 2012 25
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Timestamps and TrueTime

T

Pick s = TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

Wilson Hsieh OSDI 2012

average ε

Commit wait

average ε
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Some other details…

• Wound-wait used for deadlock prevention of write 

transactions

– No deadlocks with read-only transactions (why?)

• Uses 2-phase commit to handle distributed transactions

• Writes only occur at commit

– Not visible before commit

Wilson Hsieh OSDI 2012 27
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Commit Wait and Replication

Wilson Hsieh OSDI 2012

T

Acquired locks Release locks

Start consensus Notify slaves

Commit wait donePick s
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Achieve consensus

Commit Wait and 2-Phase Commit

Wilson Hsieh OSDI 2012

TC

Acquired locks Release locks

TP1

Acquired locks Release locks

TP2

Acquired locks Release locks

Notify participants of s

Commit wait doneCompute s for each

29

Start logging Done logging

Prepared

Compute overall s

Committed

Send s
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Write-All-Available

• Allow a transaction to proceed even though failures make 
it impossible to write all copies of the data.

• Allow the transaction to simply write to every site that is 
available. Those that are down can be ignored.

• Thus some copies of the data may be out of sync, i.e., 
may not contain the latest updates.

31

Example

• Consider the following execution. Note that multiple copies are 
marked using the upper case subscripts.
w0[xA] w0[xB] w0[yC] c0 r1[yC] w1[xA] c1 r2[xB] w2[yC] c2

• T2 reads copy xB from T0, even though it should have read from 
T1.

• Thus the above history is not equivalent to T0T1T2.

• Is it equivalent to some other serial one-copy history?

• NO! w0[yC] < r1[yC] < w2[yC], there is no other equivalent serial 
execution.

• This is interesting, because the execution actually seems to be a 
serial execution of the transactions!!!

32
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Example (contd.)

• So what has gone wrong? 
• The problem is that the write by T1 into x, did not update all copies 

of x – xB in particular.
• This could only mean that site B must have been down when T1

wrote x, and must have recovered before T2 read x. 
• I.e. the failures must have been as such:
w0[xA] w0[xB] w0[yC] c0 r1[yC] failB w1[xA] c1 RecoverB r2[xB] w2[yC] c2

• Thus the problem is that T2 read a copy at a site that had failed 
and upon recovery did not re-sync with the other sites!
– Recovery necessary to get concurrency control right!

33
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Handling Failures with Majority Protocol 

 The majority protocol with version numbers

• Each replica of each item has a version number

• Locking is done using majority protocol, as before, and version numbers are returned 

along with lock allocation

• Read operations read the value from the replica with largest version number

• Write operations

 Find highest version number like reads, and set new version number 

to  old highest version + 1

 Writes are then performed on all locked replicas and version number 

on these replicas is set to new version number

 Read operations that find out-of-date replicas may optionally write the latest 

value and version number to replicas with lower version numbers

• no need to obtain locks on all replicas for this task
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Reducing Read Cost

 Quorum consensus can be used to reduce read cost

• But at increased risk of blocking of writes due to failures

 Use primary copy scheme:

• perform all updates at primary copy 

• reads only need to be done at primary copy

• But what if primary copy fails

 Need to ensure new primary copy is chosen

• Leases can ensure there is only 1 primary copy at a time

 New primary copy needs to have latest committed version of data item

• Can use consensus protocol to avoid blocking

Distributed Deadlock Handling
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Timestamp Ordering

• The TM assigns each txn, Ti, a unique timestamp, ts(Ti).

• No two txns share a timestamp.

• A TO scheduler enforces:

• TO Rule: if pi[x] and qj[x] are conflicting operations, then 

the DM processes pi[x] before qj[x] iff ts(Ti) < ts(Tj).

37

Serializability

• Theorem: If H is a history representing an execution 
produced by a TO scheduler, then H is serializable.

• Proof: Consider SG(H). 

• If Ti Tj is an edge in SG(H), then there must exist 
conflicting operations pi[x] and qj[x] in H such that pi[x] < 
qj[x].

• Hence by the TO rule, ts(Ti) < ts(Tj).

• If there is a cycle T1 T2 …  Tn  T1 in SG(H), then 
by induction, ts(T1) < ts(T1)!!!

38
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Basic TO

• For each operation, we pass it to the DM as long as it is 

not too late!

• An operation is too late if a conflicting operation with a 

larger timestamp has already been sent to the DM.

• If an operation is too late, the earlier operation cannot be 

undone, then the txn is aborted.

• The aborted txn is restarted with a new timestamp – why?

• This avoids cyclic restart.

39

Distributed Failure and 

Recovery

40
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Failure Model

• Fail-stop:  Entire system stops when anything fails

– Defeats the purpose

• Individual sites fail-stop

– Challenge:  Multi-site transactions

• New problem:  Link Failure

– Both machines still running

– But can’t communicate

41

Link Failure Model:
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Solution:  Fail-Stop Model

• One partition continues

– The other stops

• Which one?

– Partition that has majority
• Can be slow to determine majority

– “Leader”
• If leader not in partition, elect a new leader

• Requires majority vote

• Leader must ensure its partition has a majority before other partition 
could elect a new leader

43

Limitation:  Transient Partition

• One side checks, can’t communicate

– The other side is able to when it checks

• No “perfect” solution

– See “Byzantine Generals” problem

• Requires some single point of failure

– Make that single point extremely reliable

44
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Distributed Failure/Recovery

• We’re back to fail-stop:

– Does everything work as before?

• Problem:  Distributed Transactions

45

What is a Distributed Transaction?
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Why are Distributed Transactions Hard?

• Atomic
– Different parts of a transaction may be at different sites

– How do we ensure all or none committed?

• Consistent
– Failure may affect only part of transaction

• Isolated
– Commitment must occur “simultaneously” at all sites

• Durable
– Not much different when other problems solved

– Makes “delayed commit” difficult

Distributed Failure/Recovery

• We’re back to fail-stop:

– Does everything work as before?

• Problem:  Distributed Transactions

• Simplifying assumption:  No data replication

– Locking handled at local site

– Transaction ensures 2-phase locking

• Concurrency control still works

– Ignore the difficulty of deadlock detection/prevention

48
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Committing a Distributed Transaction
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Atomic Commit Protocols

• The steps in an Atomic Commit Protocol (ACP) are as follows:

– TM gets a commit operation from the txn.

– ACP needs to arrive at  a single, consistent decision to commit or abort 

based upon the state of the txn at each site i.e.

• Scheduler

• DM (ensure that redo rule is satisfied) if there were only read operations at a site, 

ACP doesn’t need to consult DM

– Can do this by polling all sites. 

– Send the decision to each site. 

52
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ACP Requirements

• AC1: All processes that reach a decision reach the same one.

• AC2: A process cannot reverse its decision after it has reached 
one.

• AC3: The Commit decision can only be reached if all processes 
voted Yes.

• AC4: If there are no failures and all processes voted yes, then the 
decision will be to commit.

• AC5: Consider any execution containing only failures that the ACP 
is designed to tolerate. At any point in this execution, if all existing  
failures are repaired and no new failures occur for sufficiently 
long, then all processes will eventually reach a decision.

54

Key Issues

• Commitment

– Standard techniques preserve properties when commit occurs

– Distributed systems need commit protocols so we know when 
commit has occurred

• Failures

– Standard techniques support durability for commit/abort

– What happens if a site fails during commitment?
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Two-Phase Commit

(Lamport ’76, Gray ’79)

• Assumes central coordinator
– Coordinator initiates protocol

– Participants:  entities with actions to be committed/aborted

• Phase 1:
– Coordinator asks if participants can commit

– Participants respond yes/no

• Phase 2:
– If all votes yes, coordinator sends Commit

• Otherwise send Abort

– Participants send Have Committed / Have Aborted

2 Phase Commit Protocol

(Lamport ’76, Gray ’79)

1. Coord sends VOTE_REQ to all participants.

2. Each P sends a msg back with its vote: YES or NO. If it votes 
NO, it decides ABORT and stops.

3. The Coord collects all votes. 
• If all are YES and its own vote is YES, it decides COMMIT and sends 

COMMIT msgs to each participant. Stop

• Otherwise, it decides ABORT and send ABORT msgs to all participants 
that voted YES. Stop.

4. Each participant that voted YES waits for the coord’s decision, 
decides accordingly and stops.

57
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Two-Phase Commit
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Complications

• If no failures take place this ACP works fine.

• However, if there are failures, we need to specify what happens 
when:
– There is a timeout while waiting for a message; or

– A site crashes and then recovers during the ACP?

• Timeout actions:
– Participant waiting for a VOTE_REQ: unilaterally abort.

– Coord waiting for a vote: decide ABORT and send msg to all sites that 
voted yes.

60
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Cooperative Termination Protocol

• Process P sends a decision_REQ message to every participant, 

Q. P learns of the other participants from the VOTE_REQ 

message sent by the Coord.

• Q does the following:

– If Q has already decided, then it send its decision to P

– If Q has not yet voted, then it can unilaterally abort and send ABORT to P.

– If Q is also uncertain then it cannot help P – both are blocked.

62

Handling site failure in 2PC

• We use a distributed transaction log to record necessary 
information about termination protocols, in order to recover 
correctly.

• The DT log can be a part of the regular log too.

• It works as follows:
– When Coord sends a VOTE_REQ, it writes a start-2PC record (before or 

after sending message).

– If a participant votes yes, it writes a yes record before sending the vote. 
This record contains the identities of the coordinator and other participants 
(as given by the initial message of the coord).

63
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DT Log 

• If the participant votes no, it writes an abort record, either before 

or after sending the vote.

• Before the Coord sends a commit decision, it writes a commit

record.

• When the Coord sends abort, it writes the abort record to the log

• After receiving commit(abort), a participant writes a commit(abort)

record to its log.

64

Recovery

• When a site recovers, the fate of a distributed txn is determined 
as follows.

• If the DT log contains a start-2PC record, then the recovering site, 
s, was the coordinator
– if it also contains a commit or abort record, then the coord had reached a 

decision before failure.

– if neither is found, the coord can now unilaterally decide ABORT.

• If the DT log doesn’t contain the start-2PC record, then the site 
was a participant. There are three cases:

65
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Recovery (contd.)

• The DT log contains a commit or abort record – I.e. 
participant had reached a decision.

• The DT log does not contain a yes record: either the 
participant failed before voting, or voted NO. It can 
therefore unilaterally decide to ABORT.

• The DT log contains a yes record, but no commit or abort
record: participant failed during the uncertainty period –
use the termination protocol to determine fate.

66

3PC

• The problem with 2PC is that the coordinator sends Commit
messages while the participants are uncertain.

• Thus participants can decide commit while some other 
participants are uncertain.

• 3PC avoids this by sending pre-Commit messages instead of 
Commit messages, thereby moving every participant out of the 
uncertainty period before any participant commits.

• After coord receives ack for pre-Commits, it sends commit, 
allowing participants to commit.
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