
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Distributed Databases

Prof. Chris Clifton

9 December 2021

Distributed Database

Lafayette

Data

Westville

Data

Fort Wayne

Data

Beijing

Data

©Jan-21 Christopher W. Clifton 220

Distributed Database: Why?

• Performance

– Put the data close to the users

– Parallelism

• Resilience

– Fewer failures that can stop users from reaching the data

• Redundancy

– Copies of data to handle media failure

– Continue running when one machine fails

3

Distributed Database: Challenges

• Where’s the data?
– Easy – Block ID includes location

– Hard – What if we want to move the data?

– Harder – What about multiple copies of the data?

• Query Processing
– Query may access multiple sites

• Concurrency Control
– Distributed transactions

• Failure/recovery
– Is the fail-stop model still appropriate?

4

©Jan-21 Christopher W. Clifton 320

Distributed Transaction: Locking

Transaction

component

Data

Transaction

component

Data

Transaction

component

Data

Transaction

component

Data

L1(A) L1(B)

L1(C)

L1(D)

L1(E)

L2(D)

Distributed Locking

• All locks are local!

– Checking for locks happens at each site

– Wait happens at each site

– No need to communicate

• 2-phase locking is global

– No transaction component can release a lock until all are done

obtaining the lock

• We get serializability!

7

©Jan-21 Christopher W. Clifton 420

Distributed Concurrency Control:

Challenges

• Deadlock detection/prevention: Deadlocks can be

distributed

– T1 waiting for T2 at site A

– T2 waiting for T1 at site B

• Replication

– What if we want to have multiple copies of the data?

8

Replicated Data

• Thus far, we have assumed that there is only a single copy of

each data item.

• This copy is placed at one of the sites, which is responsible

for concurrency control and recovery for that data item.

• However, for a data item that is accessed often from different

sites, this could lead to a significant amount of

communication.

• Moreover, when a sites fails, all data residing on that site

becomes unavailable.

9

©Jan-21 Christopher W. Clifton 520

Replication

• To increase availability of data, and to reduce communication for
remote data, data can be replicated.

• From the user’s point of view, replication (like distribution, physical
and logical organization of data), should be transparent.

• I.e. the user should not be aware that some (or all) data items are
replicated, and should see no difference in performance.

• The user can be a programmer or an end user.

10

1 Copy Serializability

• The correctness definition for replicated databases is therefore
that it should behave as though all transactions are executed in a
serial manner on a single copy database.

• This is the notion of one copy serializability, I.e. 1SR.

• The user must be given a one copy view of the database.

• How is this achieved?

• Read-only is easy. For writes we must manage carefully!

11

©Jan-21 Christopher W. Clifton 620

Write-All approach

• This is the obvious first solution:
– Reads can be satisfied by any copy in the system,

– Writes must all modify every copy of the data item being written.

• This is a very effective solution – it completely eliminates the
problem of multiple copies, and gives each txn the correct view.
– Lock each copy

– If someone reading a copy, we can’t get write lock

• Very poor in terms of performance and progress:
– Failures have a crippling effect on transactions!

12

©Silberschatz, Korth and Sudarshan23.13Database System Concepts - 7th Edition

Quorum Consensus Protocol

Quorum consensus protocol for locking

 Each site is assigned a weight; let S be the total of all site weights

 Choose two values read quorum QR and write quorum QW

• Such that Qr + Qw > S and 2 * Qw > S

 Each read must lock enough replicas that the sum of the site weights

is ≥ Qr

 Each write must lock enough replicas that the sum of the site weights

is ≥ Qw

 Can choose Qr and Qw to tune relative overheads on reads and writes

©Jan-21 Christopher W. Clifton 720

Google Spanner

• SQL-based query language

– MapReduce based execution

• (Dyamically) replicated data

– High availability

• Read/write consistency

– Timestamp based serializability

Google Spanner Data Replication

• Data divided into Zones

– Replication across zones

– May be thousands of servers in a zone

– Placement in a zone dynamic (location proxies)

– Similar to BigTable (Servers)

• Internally: tablet abstraction

– Maps (key, timestamp)  string

• Lock Table at each replica

©Jan-21 Christopher W. Clifton 820

Overview

• Feature: Lock-free distributed read transactions

• Property: External consistency of distributed transactions

– First system at global scale

• Implementation: Integration of concurrency control,
replication, and 2PC

– Correctness and performance

• Enabling technology: TrueTime

– Interval-based global time

Wilson Hsieh OSDI 2012 17

Concurrency Control

• Three types of transactions

– Read-write

– Snapshot Transactions

• Pre-declared as having no writes

– Snapshot reads

• Weak consistency guarantee

• “sufficiently up to date”

• All data timestamped

Wilson Hsieh OSDI 2012 18

©Jan-21 Christopher W. Clifton 920

Consistency: Read/Write

• Read-write uses strict two-phase locking
– Locks held until commit

• Timestamp assigned after all locks acquired
– Timestamps assigned by “leader” at each site

– All writes have that timestamp

• Replicas track “safe time” – maximum timestamp at which a replica
is up-to-date
– Infinite if no transactions operating on object

– Otherwise timestamp of first completed (but not committed) transaction

• Serializability is timestamp order
– If T2 starts after T1 commits, must have later timestamp

Consistency: Reads

• Read transactions assigned a timestamp

– Only read data written before that timestamp

– Can’t read data if timestamp > safe time

Twrite < Tread < Tsafe

• What to assign as a timestamp?

– Current time means replicas may be past “safe”

– Can assign “old” timestamps, more replicas are okay

– Read transactions may serialize before they actually start

©Jan-21 Christopher W. Clifton 1020

Version Management

• Transactions that write use strict 2PL

– Each transaction T is assigned a timestamp s

– Data written by T is timestamped with s

Wilson Hsieh OSDI 2012 21

Time 8<8

[X]

[me]

15

[P]

My friends

My posts

X’s friends

[]

[]

Timestamps, Global Clock

• Strict two-phase locking for write transactions

• Assign timestamp while locks are held

Wilson Hsieh OSDI 2012 23

T

Pick s = now()

Acquired locks Release locks

©Jan-21 Christopher W. Clifton 1120

Timestamp Invariants

Wilson Hsieh OSDI 2012 24

• Timestamp order == commit order

• Timestamp order respects global wall-time order

T2

T3

T4

T1

TrueTime

• “Global wall-clock time” with bounded uncertainty

Wilson Hsieh OSDI 2012 25

time

earliest latest

TT.now()

2*ε

©Jan-21 Christopher W. Clifton 1220

Timestamps and TrueTime

T

Pick s = TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

Wilson Hsieh OSDI 2012

average ε

Commit wait

average ε

26

Some other details…

• Wound-wait used for deadlock prevention of write

transactions

– No deadlocks with read-only transactions (why?)

• Uses 2-phase commit to handle distributed transactions

• Writes only occur at commit

– Not visible before commit

Wilson Hsieh OSDI 2012 27

©Jan-21 Christopher W. Clifton 1320

Commit Wait and Replication

Wilson Hsieh OSDI 2012

T

Acquired locks Release locks

Start consensus Notify slaves

Commit wait donePick s

28

Achieve consensus

Commit Wait and 2-Phase Commit

Wilson Hsieh OSDI 2012

TC

Acquired locks Release locks

TP1

Acquired locks Release locks

TP2

Acquired locks Release locks

Notify participants of s

Commit wait doneCompute s for each

29

Start logging Done logging

Prepared

Compute overall s

Committed

Send s

©Jan-21 Christopher W. Clifton 1420

Write-All-Available

• Allow a transaction to proceed even though failures make
it impossible to write all copies of the data.

• Allow the transaction to simply write to every site that is
available. Those that are down can be ignored.

• Thus some copies of the data may be out of sync, i.e.,
may not contain the latest updates.

31

Example

• Consider the following execution. Note that multiple copies are
marked using the upper case subscripts.
w0[xA] w0[xB] w0[yC] c0 r1[yC] w1[xA] c1 r2[xB] w2[yC] c2

• T2 reads copy xB from T0, even though it should have read from
T1.

• Thus the above history is not equivalent to T0T1T2.

• Is it equivalent to some other serial one-copy history?

• NO! w0[yC] < r1[yC] < w2[yC], there is no other equivalent serial
execution.

• This is interesting, because the execution actually seems to be a
serial execution of the transactions!!!

32

©Jan-21 Christopher W. Clifton 1520

Example (contd.)

• So what has gone wrong?
• The problem is that the write by T1 into x, did not update all copies

of x – xB in particular.
• This could only mean that site B must have been down when T1

wrote x, and must have recovered before T2 read x.
• I.e. the failures must have been as such:
w0[xA] w0[xB] w0[yC] c0 r1[yC] failB w1[xA] c1 RecoverB r2[xB] w2[yC] c2

• Thus the problem is that T2 read a copy at a site that had failed
and upon recovery did not re-sync with the other sites!
– Recovery necessary to get concurrency control right!

33

©Silberschatz, Korth and Sudarshan23.34Database System Concepts - 7th Edition

Handling Failures with Majority Protocol

 The majority protocol with version numbers

• Each replica of each item has a version number

• Locking is done using majority protocol, as before, and version numbers are returned

along with lock allocation

• Read operations read the value from the replica with largest version number

• Write operations

 Find highest version number like reads, and set new version number

to old highest version + 1

 Writes are then performed on all locked replicas and version number

on these replicas is set to new version number

 Read operations that find out-of-date replicas may optionally write the latest

value and version number to replicas with lower version numbers

• no need to obtain locks on all replicas for this task

©Jan-21 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan23.35Database System Concepts - 7th Edition

Reducing Read Cost

 Quorum consensus can be used to reduce read cost

• But at increased risk of blocking of writes due to failures

 Use primary copy scheme:

• perform all updates at primary copy

• reads only need to be done at primary copy

• But what if primary copy fails

 Need to ensure new primary copy is chosen

• Leases can ensure there is only 1 primary copy at a time

 New primary copy needs to have latest committed version of data item

• Can use consensus protocol to avoid blocking

Distributed Deadlock Handling

©Jan-21 Christopher W. Clifton 1720

Timestamp Ordering

• The TM assigns each txn, Ti, a unique timestamp, ts(Ti).

• No two txns share a timestamp.

• A TO scheduler enforces:

• TO Rule: if pi[x] and qj[x] are conflicting operations, then

the DM processes pi[x] before qj[x] iff ts(Ti) < ts(Tj).

37

Serializability

• Theorem: If H is a history representing an execution
produced by a TO scheduler, then H is serializable.

• Proof: Consider SG(H).

• If Ti Tj is an edge in SG(H), then there must exist
conflicting operations pi[x] and qj[x] in H such that pi[x] <
qj[x].

• Hence by the TO rule, ts(Ti) < ts(Tj).

• If there is a cycle T1 T2 …  Tn  T1 in SG(H), then
by induction, ts(T1) < ts(T1)!!!

38

©Jan-21 Christopher W. Clifton 1820

Basic TO

• For each operation, we pass it to the DM as long as it is

not too late!

• An operation is too late if a conflicting operation with a

larger timestamp has already been sent to the DM.

• If an operation is too late, the earlier operation cannot be

undone, then the txn is aborted.

• The aborted txn is restarted with a new timestamp – why?

• This avoids cyclic restart.

39

Distributed Failure and

Recovery

40

©Jan-21 Christopher W. Clifton 1920

Failure Model

• Fail-stop: Entire system stops when anything fails

– Defeats the purpose

• Individual sites fail-stop

– Challenge: Multi-site transactions

• New problem: Link Failure

– Both machines still running

– But can’t communicate

41

Link Failure Model:

Partition

Lafayette

Data

Westville

Data

Fort Wayne

Data

Beijing

Data

Communication

still possible

©Jan-21 Christopher W. Clifton 2020

Solution: Fail-Stop Model

• One partition continues

– The other stops

• Which one?

– Partition that has majority
• Can be slow to determine majority

– “Leader”
• If leader not in partition, elect a new leader

• Requires majority vote

• Leader must ensure its partition has a majority before other partition
could elect a new leader

43

Limitation: Transient Partition

• One side checks, can’t communicate

– The other side is able to when it checks

• No “perfect” solution

– See “Byzantine Generals” problem

• Requires some single point of failure

– Make that single point extremely reliable

44

©Jan-21 Christopher W. Clifton 2120

Distributed Failure/Recovery

• We’re back to fail-stop:

– Does everything work as before?

• Problem: Distributed Transactions

45

What is a Distributed Transaction?

Transaction

component

Data

Transaction

component

Data

Transaction

component

Data

Transaction

component

Data

©Jan-21 Christopher W. Clifton 2220

Why are Distributed Transactions Hard?

• Atomic
– Different parts of a transaction may be at different sites

– How do we ensure all or none committed?

• Consistent
– Failure may affect only part of transaction

• Isolated
– Commitment must occur “simultaneously” at all sites

• Durable
– Not much different when other problems solved

– Makes “delayed commit” difficult

Distributed Failure/Recovery

• We’re back to fail-stop:

– Does everything work as before?

• Problem: Distributed Transactions

• Simplifying assumption: No data replication

– Locking handled at local site

– Transaction ensures 2-phase locking

• Concurrency control still works

– Ignore the difficulty of deadlock detection/prevention

48

©Jan-21 Christopher W. Clifton 2320

Committing a Distributed Transaction

Transaction

component

Data

log

Transaction

component

Data

log

Transaction

component

Data

log

Transaction

component

Data

log

Atomic Commit Protocols

• The steps in an Atomic Commit Protocol (ACP) are as follows:

– TM gets a commit operation from the txn.

– ACP needs to arrive at a single, consistent decision to commit or abort

based upon the state of the txn at each site i.e.

• Scheduler

• DM (ensure that redo rule is satisfied) if there were only read operations at a site,

ACP doesn’t need to consult DM

– Can do this by polling all sites.

– Send the decision to each site.

52

©Jan-21 Christopher W. Clifton 2420

ACP Requirements

• AC1: All processes that reach a decision reach the same one.

• AC2: A process cannot reverse its decision after it has reached
one.

• AC3: The Commit decision can only be reached if all processes
voted Yes.

• AC4: If there are no failures and all processes voted yes, then the
decision will be to commit.

• AC5: Consider any execution containing only failures that the ACP
is designed to tolerate. At any point in this execution, if all existing
failures are repaired and no new failures occur for sufficiently
long, then all processes will eventually reach a decision.

54

Key Issues

• Commitment

– Standard techniques preserve properties when commit occurs

– Distributed systems need commit protocols so we know when
commit has occurred

• Failures

– Standard techniques support durability for commit/abort

– What happens if a site fails during commitment?

©Jan-21 Christopher W. Clifton 2520

Two-Phase Commit

(Lamport ’76, Gray ’79)

• Assumes central coordinator
– Coordinator initiates protocol

– Participants: entities with actions to be committed/aborted

• Phase 1:
– Coordinator asks if participants can commit

– Participants respond yes/no

• Phase 2:
– If all votes yes, coordinator sends Commit

• Otherwise send Abort

– Participants send Have Committed / Have Aborted

2 Phase Commit Protocol

(Lamport ’76, Gray ’79)

1. Coord sends VOTE_REQ to all participants.

2. Each P sends a msg back with its vote: YES or NO. If it votes
NO, it decides ABORT and stops.

3. The Coord collects all votes.
• If all are YES and its own vote is YES, it decides COMMIT and sends

COMMIT msgs to each participant. Stop

• Otherwise, it decides ABORT and send ABORT msgs to all participants
that voted YES. Stop.

4. Each participant that voted YES waits for the coord’s decision,
decides accordingly and stops.

57

©Jan-21 Christopher W. Clifton 2620

Two-Phase Commit

Transaction

component

Data

log

Transaction

component

Data

log

Transaction

component

Data

log

Transaction

component

Data

log

Coordinator

CanCommit? CanCommit?

CanCommit? CanCommit?

Yes

Yes

Yes

Yes

Commit

CommitCommit

Commit

Done

Done Done

Done

Complications

• If no failures take place this ACP works fine.

• However, if there are failures, we need to specify what happens
when:
– There is a timeout while waiting for a message; or

– A site crashes and then recovers during the ACP?

• Timeout actions:
– Participant waiting for a VOTE_REQ: unilaterally abort.

– Coord waiting for a vote: decide ABORT and send msg to all sites that
voted yes.

60

©Jan-21 Christopher W. Clifton 2720

Cooperative Termination Protocol

• Process P sends a decision_REQ message to every participant,

Q. P learns of the other participants from the VOTE_REQ

message sent by the Coord.

• Q does the following:

– If Q has already decided, then it send its decision to P

– If Q has not yet voted, then it can unilaterally abort and send ABORT to P.

– If Q is also uncertain then it cannot help P – both are blocked.

62

Handling site failure in 2PC

• We use a distributed transaction log to record necessary
information about termination protocols, in order to recover
correctly.

• The DT log can be a part of the regular log too.

• It works as follows:
– When Coord sends a VOTE_REQ, it writes a start-2PC record (before or

after sending message).

– If a participant votes yes, it writes a yes record before sending the vote.
This record contains the identities of the coordinator and other participants
(as given by the initial message of the coord).

63

©Jan-21 Christopher W. Clifton 2820

DT Log

• If the participant votes no, it writes an abort record, either before

or after sending the vote.

• Before the Coord sends a commit decision, it writes a commit

record.

• When the Coord sends abort, it writes the abort record to the log

• After receiving commit(abort), a participant writes a commit(abort)

record to its log.

64

Recovery

• When a site recovers, the fate of a distributed txn is determined
as follows.

• If the DT log contains a start-2PC record, then the recovering site,
s, was the coordinator
– if it also contains a commit or abort record, then the coord had reached a

decision before failure.

– if neither is found, the coord can now unilaterally decide ABORT.

• If the DT log doesn’t contain the start-2PC record, then the site
was a participant. There are three cases:

65

©Jan-21 Christopher W. Clifton 2920

Recovery (contd.)

• The DT log contains a commit or abort record – I.e.
participant had reached a decision.

• The DT log does not contain a yes record: either the
participant failed before voting, or voted NO. It can
therefore unilaterally decide to ABORT.

• The DT log contains a yes record, but no commit or abort
record: participant failed during the uncertainty period –
use the termination protocol to determine fate.

66

3PC

• The problem with 2PC is that the coordinator sends Commit
messages while the participants are uncertain.

• Thus participants can decide commit while some other
participants are uncertain.

• 3PC avoids this by sending pre-Commit messages instead of
Commit messages, thereby moving every participant out of the
uncertainty period before any participant commits.

• After coord receives ack for pre-Commits, it sends commit,
allowing participants to commit.

71

