Features of Good Relational Designs

- Suppose we combine instructor and department into in_dep, which represents the natural join on the relations instructor and department

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>salary</th>
<th>dept_name</th>
<th>building</th>
<th>budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>95000</td>
<td>Physics</td>
<td>Watson</td>
<td>70000</td>
</tr>
<tr>
<td>12412</td>
<td>Wu</td>
<td>90000</td>
<td>Finance</td>
<td>Painter</td>
<td>120000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>60000</td>
<td>History</td>
<td>Painter</td>
<td>50000</td>
</tr>
<tr>
<td>45565</td>
<td>Katz</td>
<td>75000</td>
<td>Comp. Sci.</td>
<td>Taylor</td>
<td>100000</td>
</tr>
<tr>
<td>98345</td>
<td>Kim</td>
<td>80000</td>
<td>Elec. Eng.</td>
<td>Taylor</td>
<td>85000</td>
</tr>
<tr>
<td>76566</td>
<td>Crick</td>
<td>72000</td>
<td>Biology</td>
<td>Watson</td>
<td>90000</td>
</tr>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>65000</td>
<td>Comp. Sci.</td>
<td>Taylor</td>
<td>100000</td>
</tr>
<tr>
<td>58383</td>
<td>Califieri</td>
<td>62000</td>
<td>History</td>
<td>Painter</td>
<td>50000</td>
</tr>
<tr>
<td>83621</td>
<td>Brandt</td>
<td>92000</td>
<td>Comp. Sci.</td>
<td>Taylor</td>
<td>100000</td>
</tr>
<tr>
<td>15151</td>
<td>Mozzari</td>
<td>40000</td>
<td>Music</td>
<td>Packard</td>
<td>80000</td>
</tr>
<tr>
<td>33436</td>
<td>Gold</td>
<td>67000</td>
<td>Physics</td>
<td>Watson</td>
<td>70000</td>
</tr>
<tr>
<td>76543</td>
<td>Singh</td>
<td>80000</td>
<td>Finance</td>
<td>Painter</td>
<td>120000</td>
</tr>
</tbody>
</table>

- There is repetition of information
- Need to use null values (if we add a new department with no instructors)
Decomposition

- The only way to avoid the repetition-of-information problem in the `in_dep` schema is to decompose it into two schemas – instructor and `department` schemas.
- Not all decompositions are good. Suppose we decompose

\[employee(\text{ID, name, street, city, salary}) \]

into

\[
\begin{align*}
\text{employee1} & (\text{ID, name}) \\
\text{employee2} & (\text{name, street, city, salary})
\end{align*}
\]

The problem arises when we have two employees with the same name

- The next slide shows how we lose information -- we cannot reconstruct the original `employee` relation -- and so, this is a **lossy decomposition**.
Lossless Decomposition

- Let R be a relation schema and let R_1 and R_2 form a decomposition of R
 - That is $R = R_1 \cup R_2$
- We say that the decomposition is a **lossless decomposition** if there is no loss of information by replacing R with the two relation schemas $R_1 \cup R_2$
- Formally,
 $$\prod_{R_1}(r) \bowtie \prod_{R_2}(r) = r$$
- And, conversely a decomposition is lossy if
 $$r \subseteq \prod_{R_1}(r) \bowtie \prod_{R_2}(r) = r$$

Example of Lossless Decomposition

- Decomposition of $R = (A, B, C)$
 $$R_1 = (A, B) \quad R_2 = (B, C)$$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 $\prod_{A,B}(r)$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
</tr>
</tbody>
</table>

 $\prod_{B,C}(r)$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

$\prod_{A}(r) \bowtie \prod_{B}(r)$
Normalization Theory

- Decide whether a particular relation R is in “good” form.
- In the case that a relation R is not in “good” form, decompose it into set of relations $\{R_1, R_2, \ldots, R_n\}$ such that
 - Each relation is in good form
 - The decomposition is a lossless decomposition
- Our theory is based on:
 - Functional dependencies
 - Multivalued dependencies

Functional Dependencies

- There are usually a variety of constraints (rules) on the data in the real world.
- For example, some of the constraints that are expected to hold in a university database are:
 - Students and instructors are uniquely identified by their ID.
 - Each student and instructor has only one name.
 - Each instructor and student is (primarily) associated with only one department.
 - Each department has only one value for its budget, and only one associated building.
Functional Dependencies

$X \rightarrow A = \text{assertion about a relation } R \text{ that whenever two tuples agree on all the attributes of } X, \text{ then they must also agree on attribute } A$

Why do we care?

Knowing functional dependencies provides a formal mechanism to divide up relations (normalization)

- Saves space
- Prevents storing data that violates dependencies

Functional Dependencies Definition

- Let R be a relation schema $\alpha \subseteq R$ and $\beta \subseteq R$
- The functional dependency $\alpha \rightarrow \beta$
 holds on R if and only if for any legal relations $r(R)$, whenever any two tuples t_1 and t_2 of r agree on the attributes α, they also agree on the attributes β. That is,

 $$t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$$

- Example: Consider $r(A, B)$ with the following instance of r.

 $\begin{array}{cc}
 1 & 4 \\
 1 & 5 \\
 3 & 7 \\
 \end{array}$

- On this instance, $B \rightarrow A$ hold; $A \rightarrow B$ does NOT hold,
Keys of Relations

K is a key for relation R if:

1. $K \rightarrow$ all attributes of R. (Uniqueness)
2. For no proper subset of K is (1) true. (Minimality)
 - If K at least satisfies (1), then K is a superkey.

Conventions
- Pick one key; underline key attributes in the relation schema.
- X, etc., represent sets of attributes; A etc., represent single attributes.
- No set formers in FD's, e.g., ABC instead of \{A, B, C\}.

Keys and Functional Dependencies

- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

 $in_{dep} (ID, name, salary, dept_name, building, budget)$.

 We expect these functional dependencies to hold:

 \[dept_name \rightarrow building \]

 \[ID \rightarrow building \]

 but would not expect the following to hold:

 \[dept_name \rightarrow salary \]
Example

<table>
<thead>
<tr>
<th>Lastname</th>
<th>Firstname</th>
<th>Student ID</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td></td>
<td>Key</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Superkey</td>
</tr>
</tbody>
</table>

Note: There are alternate keys

- Keys are \{Lastname, Firstname\} and \{StudentID\}

Use of Functional Dependencies

- We use functional dependencies to:
 - To test relations to see if they are legal under a given set of functional dependencies.
 - If a relation r is legal under a set F of functional dependencies, we say that r satisfies F.
 - To specify constraints on the set of legal relations
 - We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F.

- Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.
 - For example, a specific instance of instructor may, by chance, satisfy $name \rightarrow ID$.
Trivial Functional Dependencies

- A functional dependency is **trivial** if it is satisfied by all instances of a relation

- Example:
 - $ID, \text{name} \rightarrow ID$
 - $\text{name} \rightarrow \text{name}$

- In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$

Who Determines Keys/FD’s?

- We could assert a key K.
 - Then the only FD’s asserted are that $K \rightarrow A$ for every attribute A.
 - No surprise: K is then the only key for those FD’s, according to the formal definition of “key.”

- Or, we could assert some FD’s and *deduce* one or more keys by the formal definition.

- Rule of thumb: FD’s either come from keyness, many-1 relationship, or from physics.
 - *E.g.*, “no two courses can meet in the same room at the same time” yields $\text{room time} \rightarrow \text{course}$.
Functional Dependencies (FD’s) and Many-One Relationships

- Consider \(R(A_1, \ldots, A_n) \) and \(X \) is a key then \(X \rightarrow Y \) for any attributes \(Y \) in \(A_1, \ldots, A_n \) even if they overlap with \(X \). Why?
- Suppose \(R \) is used to represent a many \(\rightarrow \) one relationship:
 - \(E_1 \) entity set \(\rightarrow E_2 \) entity set
 - where \(X \) key for \(E_1 \), \(Y \) key for \(E_2 \),
 - Then, \(X \rightarrow Y \) holds,
 - And \(Y \rightarrow X \) does not hold unless the relationship is one-one.
- What about many-many relationships?

Inferring FD’s

And this is important because …
- When we talk about improving relational designs, we often need to ask “does this FD hold in this relation?”

Given FD’s \(X_1 \rightarrow A_1, X_2 \rightarrow A_2, \ldots, X_n \rightarrow A_n \), does FD \(Y \rightarrow B \) necessarily hold in the same relation?
- Start by assuming two tuples agree in \(Y \). Use given FD’s to infer other attributes on which they must agree. If \(B \) is among them, then yes, else no.