
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Prof. Chris Clifton

2 September 2021

Relational Database Design

©Silberschatz, Korth and Sudarshan7.13Database System Concepts - 7th Edition

Features of Good Relational Designs

 Suppose we combine instructor and department into in_dep, which represents the

natural join on the relations instructor and department

 There is repetition of information

 Need to use null values (if we add a new department with no instructors)

©Jan-21 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan7.15Database System Concepts - 7th Edition

Decomposition

 The only way to avoid the repetition-of-information problem in the in_dep schema is to

decompose it into two schemas – instructor and department schemas.

 Not all decompositions are good. Suppose we decompose

employee(ID, name, street, city, salary)

into

employee1 (ID, name)

employee2 (name, street, city, salary)

The problem arises when we have two employees with the same name

 The next slide shows how we lose information -- we cannot reconstruct the original

employee relation -- and so, this is a lossy decomposition.

©Silberschatz, Korth and Sudarshan7.17Database System Concepts - 7th Edition

A Lossy Decomposition

17

©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan7.18Database System Concepts - 7th Edition

Lossless Decomposition

 Let R be a relation schema and let R1 and R2 form a decomposition of R

• That is R = R1 U R2

 We say that the decomposition is a lossless decomposition if there is

no loss of information by replacing R with the two relation schemas R1

U R2

 Formally,

 R1
(r) R2

(r) = r

 And, conversely a decomposition is lossy if

r R1
(r) R2

(r) = r

©Silberschatz, Korth and Sudarshan7.19Database System Concepts - 7th Edition

Example of Lossless Decomposition

 Decomposition of R = (A, B, C)

R1 = (A, B) R2 = (B, C)

©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan7.20Database System Concepts - 7th Edition

Normalization Theory

 Decide whether a particular relation R is in “good” form.

 In the case that a relation R is not in “good” form, decompose it into

set of relations {R1, R2, ..., Rn} such that

• Each relation is in good form

• The decomposition is a lossless decomposition

 Our theory is based on:

• Functional dependencies

• Multivalued dependencies

©Silberschatz, Korth and Sudarshan7.21Database System Concepts - 7th Edition

Functional Dependencies

 There are usually a variety of constraints (rules) on the data in the real world.

 For example, some of the constraints that are expected to hold in a university

database are:

• Students and instructors are uniquely identified by their ID.

• Each student and instructor has only one name.

• Each instructor and student is (primarily) associated with only one department.

• Each department has only one value for its budget, and only one associated

building.

©Jan-21 Christopher W. Clifton 520

23

Functional Dependencies

X A = assertion about a relation R that whenever two
tuples agree on all the attributes of X, then they must also
agree on attribute A

Why do we care?

Knowing functional dependencies provides a formal mechanism
to divide up relations (normalization)

Saves space

Prevents storing data that violates dependencies

©Silberschatz, Korth and Sudarshan7.26Database System Concepts - 7th Edition

Functional Dependencies Definition

 Let R be a relation schema

 R and R

 The functional dependency

holds on R if and only if for any legal relations r(R), whenever any two tuples t1 and t2
of r agree on the attributes , they also agree on the attributes . That is,

t1[] = t2 [] t1[] = t2 []

 Example: Consider r(A,B) with the following instance of r.

 On this instance, B A hold; A B does NOT hold,

1 4

1 5

3 7

©Jan-21 Christopher W. Clifton 620

27

Keys of Relations

K is a key for relation R if:

1. K all attributes of R. (Uniqueness)

2. For no proper subset of K is (1) true. (Minimality)

• If K at least satisfies (1), then K is a superkey.

Conventions
• Pick one key; underline key attributes in the relation schema.

• X, etc., represent sets of attributes; A etc., represent single attributes.

• No set formers in FD’s, e.g., ABC instead of
{A, B, C}.

©Silberschatz, Korth and Sudarshan7.28Database System Concepts - 7th Edition

Keys and Functional Dependencies

 Functional dependencies allow us to express constraints that cannot be

expressed using superkeys. Consider the schema:

in_dep (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:

dept_name building

ID building

but would not expect the following to hold:

dept_name salary

©Jan-21 Christopher W. Clifton 720

30

Example

• Keys are {Lastname, Firstname} and

{StudentID}

Lastname Firstname Student ID Major

Key Key

(2 attributes)

Superkey

Note: There are alternate keys

©Silberschatz, Korth and Sudarshan7.31Database System Concepts - 7th Edition

Use of Functional Dependencies

 We use functional dependencies to:

• To test relations to see if they are legal under a given set of functional

dependencies.

 If a relation r is legal under a set F of functional dependencies, we say that r

satisfies F.

• To specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R satisfy the set of functional

dependencies F.

 Note: A specific instance of a relation schema may satisfy a functional dependency

even if the functional dependency does not hold on all legal instances.

• For example, a specific instance of instructor may, by chance, satisfy

name ID.

©Jan-21 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan7.32Database System Concepts - 7th Edition

Trivial Functional Dependencies

 A functional dependency is trivial if it is satisfied by all instances of a

relation

 Example:

• ID, name ID

• name name

 In general, is trivial if

33

Who Determines Keys/FD’s?

• We could assert a key K.

– Then the only FD’s asserted are that K A for every attribute A.

– No surprise: K is then the only key for those FD’s, according to the formal definition of
“key.”

• Or, we could assert some FD’s and deduce one or more keys by the formal
definition.

• Rule of thumb: FD’s either come from keyness, many-1 relationship, or from
physics.

– E.g., “no two courses can meet in the same room at the same time” yields room time

 course.

©Jan-21 Christopher W. Clifton 920

34

Functional Dependencies (FD’s)

and Many-One Relationships

• Consider R(A1,…, An) and X is a key

then X Y for any attributes Y in A1,…, An

even if they overlap with X. Why?

• Suppose R is used to represent a many one relationship:

E1 entity set E2 entity set

where X key for E1, Y key for E2,

Then, X Y holds,

And Y X does not hold unless the relationship is one-one.

• What about many-many relationships?

35

Inferring FD’s

And this is important because …

• When we talk about improving relational designs, we often need to ask “does

this FD hold in this relation?”

Given FD’s X1 A1, X2 A2,…, Xn An, does FD Y B necessarily hold in

the same relation?

• Start by assuming two tuples agree in Y. Use given FD’s to infer other

attributes on which they must agree. If B is among them, then yes, else no.

