Schedules and Concurrency

- Want schedules that are “good”, regardless of
 - initial state and
 - transaction semantics
- Only look at order of read and writes

- Example:
 - Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)
Example

$$Sc = r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$$

$$Sc' = r_1(A)w_1(A)r_1(B)w_1(B)r_2(A)w_2(A)r_2(B)w_2(B)$$

$$T_1 \quad T_2$$

3/26/2021

However, for Sd:

$$Sd = r_1(A)w_1(A)r_2(A)w_2(A)r_2(B)w_2(B)r_1(B)w_1(B)$$

- as a matter of fact,
 T_2 must precede T_1
 in any equivalent schedule,
 i.e., $T_2 \rightarrow T_1$
• $T_2 \rightarrow T_1$

• Also, $T_1 \rightarrow T_2$

$T_1 \xrightarrow{\text{Sd cannot be rearranged}} T_2$
\Rightarrow
$\text{Sd is not “equivalent” to}$
\Rightarrow
$\text{any serial schedule}$
\Rightarrow
Sd is “bad”

Returning to Sc

$Sc = r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$

$T_1 \rightarrow T_2$
$T_1 \rightarrow T_2$

$\blacklozenge \text{ no cycles } \Rightarrow \text{Sc is “equivalent” to a serial schedule}$
(in this case T_1,T_2)
Concepts

Transaction: sequence of $r_i(x), w_i(x)$ actions

Conflicting actions:

$$ r_1(A) \leftarrow w_2(A) \leftarrow w_1(A) \leftarrow w_2(A) \leftarrow r_1(A) $$

Schedule: represents chronological order in which actions are executed

Serial schedule: no interleaving of actions or transactions

What about concurrent actions?

- Ti issues read(x,t)
- System issues input(x)
- Input(X) completes
- $t \leftarrow x$

- T2 issues write(B,S)
- System issues input(B)
- input(B) completes
- System issues output(B)
- B $\leftarrow S$

- output(B) completes
• So net effect is either
 – \(S = \ldots r_1(x) \ldots w_2(b) \ldots \) or
 – \(S = \ldots w_2(B) \ldots r_1(x) \ldots \)

What about conflicting, concurrent actions on same object?

\[
\begin{array}{c}
\text{start } r_1(A) \\
\text{+} \\
\text{start } w_2(A)
\end{array}
\quad
\begin{array}{c}
\text{end } r_1(A) \\
\text{+} \\
\text{end } w_2(A)
\end{array}
\quad
\text{time}
\]

• Assume equivalent to either \(r_1(A) \ w_2(A) \)
 or \(w_2(A) \ r_1(A) \)

• \(\Rightarrow \) low level synchronization mechanism
• Assumption called “atomic actions”
Serializability

- **Basic Assumption** – Each transaction preserves database consistency.
- Thus, serial execution of a set of transactions preserves database consistency.
- A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule. Different forms of schedule equivalence give rise to the notions of:
 1. **Conflict serializability**
 2. **View serializability**

Simplifying assumptions
- We ignore operations other than *read* and *write* instructions
- We assume that transactions may perform arbitrary computations on data in local buffers in between reads and writes.
- Our simplified schedules consist of only *read* and *write* instructions

Conflicting Instructions

Instructions \(l_i \) and \(l_j \) of transactions \(T_i \) and \(T_j \) respectively, conflict if and only if there exists some item \(Q \) accessed by both \(l_i \) and \(l_j \), and at least one of these instructions wrote \(Q \).

1. \(l_i = \text{read}(Q) \), \(l_j = \text{read}(Q) \). \(l_i \) and \(l_j \) don’t conflict.
2. \(l_i = \text{read}(Q) \), \(l_j = \text{write}(Q) \). They conflict.
3. \(l_i = \text{write}(Q) \), \(l_j = \text{read}(Q) \). They conflict
4. \(l_i = \text{write}(Q) \), \(l_j = \text{write}(Q) \). They conflict

Intuitively, a conflict between \(l_i \) and \(l_j \) forces a (logical) temporal order between them.

If \(l_i \) and \(l_j \) are consecutive in a schedule and they do not conflict, their results would remain the same even if they had been interchanged in the schedule.
Definition

- S1, S2 are conflict equivalent schedules
 - if S1 can be transformed into S2 by a series of swaps on non-conflicting actions.
- A schedule is *conflict serializable* if it is conflict equivalent to some serial schedule.

Conflict Serializability (Cont.)

- Schedule 3 can be transformed into Schedule 6, a serial schedule where T_2 follows T_1, by series of swaps of non-conflicting instructions. Therefore Schedule 3 is conflict serializable.

<table>
<thead>
<tr>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>read (A)</td>
<td>read (A)</td>
</tr>
<tr>
<td>write (A)</td>
<td>write (A)</td>
</tr>
<tr>
<td>read (B)</td>
<td>read (B)</td>
</tr>
<tr>
<td>write (B)</td>
<td>write (B)</td>
</tr>
</tbody>
</table>

Schedule 3

<table>
<thead>
<tr>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>read (A)</td>
<td>read (A)</td>
</tr>
<tr>
<td>write (A)</td>
<td>write (A)</td>
</tr>
<tr>
<td>read (B)</td>
<td>read (B)</td>
</tr>
<tr>
<td>write (B)</td>
<td>write (B)</td>
</tr>
</tbody>
</table>

Schedule 6
Conflict Serializability (Cont.)

- Example of a schedule that is not conflict serializable:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T_3</td>
<td>T_4</td>
</tr>
<tr>
<td>read (Q)</td>
<td>write (Q)</td>
</tr>
<tr>
<td>write (Q)</td>
<td></td>
</tr>
</tbody>
</table>

- We are unable to swap instructions in the above schedule to obtain either the serial schedule $< T_3, T_4 >$, or the serial schedule $< T_4, T_3 >$.

View Serializability

- Let S and S' be two schedules with the same set of transactions. S and S' are view equivalent if the following three conditions are met, for each data item Q,
 1. If in schedule S, transaction T_i reads the initial value of Q, then in schedule S' also transaction T_i must read the initial value of Q.
 2. If in schedule S transaction T_i executes read(Q), and that value was produced by transaction T_j (if any), then in schedule S' also transaction T_i must read the value of Q that was produced by the same write(Q) operation of transaction T_j.
 3. The transaction (if any) that performs the final write(Q) operation in schedule S must also perform the final write(Q) operation in schedule S'.

- As can be seen, view equivalence is also based purely on reads and writes alone.
View Serializability (Cont.)

- A schedule S is **view serializable** if it is view equivalent to a serial schedule.
- Every conflict serializable schedule is also view serializable.
- Below is a schedule which is view-serializable but *not* conflict serializable.

<table>
<thead>
<tr>
<th>T_{27}</th>
<th>T_{28}</th>
<th>T_{29}</th>
</tr>
</thead>
<tbody>
<tr>
<td>read (Q)</td>
<td>write (Q)</td>
<td>write (Q)</td>
</tr>
<tr>
<td>write (Q)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What serial schedule is above equivalent to?
- Every view serializable schedule that is not conflict serializable has **blind writes**.

Other Notions of Serializability

- The schedule below produces same outcome as the serial schedule $< T_1, T_5 >$, yet is not conflict equivalent or view equivalent to it.

<table>
<thead>
<tr>
<th>T_1</th>
<th>T_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>read (A) $\quad A := A - 50$ write (A)</td>
<td>read (B) $\quad B := B - 10$ write (B)</td>
</tr>
<tr>
<td>read (B) $\quad B := B + 50$ write (B)</td>
<td></td>
</tr>
</tbody>
</table>

- Determining such equivalence requires analysis of operations other than read and write.
Testing for Serializability

- Consider some schedule of a set of transactions \(T_1, T_2, \ldots, T_n \)
- **Precedence graph** — a direct graph where the vertices are the transactions (names).
- We draw an arc from \(T_i \) to \(T_j \) if the two transactions conflict, and \(T_i \) accessed the data item on which the conflict arose earlier.
- We may label the arc by the item that was accessed.
- Example of a precedence graph

![Graph with transactions T1 and T2]

Exercise:

- What is \(P(S) \) for
 \[S = w_3(A) \, w_2(C) \, r_1(A) \, w_1(B) \, r_1(C) \, w_2(A) \, r_4(A) \, w_4(D) \]

- Is \(S \) serializable?