
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Recovery: Checkpointing

Prof. Chris Clifton

16 November 2021

Recovery is very, very SLOW !

Redo log:

First T1 wrote A,B Last
Record Committed a year ago Record
(1 year ago) --> STILL, Need to redo after crash!!

...

Crash

53

©Jan-21 Christopher W. Clifton 220

Solution: Checkpoint (simple version)

• Periodically:

1. Do not accept new transactions

2. Wait until all transactions finish

3. Flush all log records to disk (log)

4. Flush all buffers to disk (DB) (do not discard buffers)

5. Write “checkpoint” record on disk (log)

6. Resume transaction processing

54

Example: what to do at recovery?

• Redo log (disk):

<
T
1
,A

,1
6
>

<
T
1
,c

o
m

m
it
>

C
h
e
ck

p
o
in

t

<
T
2
,B

,1
7
>

<
T
2
,c

o
m

m
it
>

<
T
3
,C

,2
1
>

Crash
...

55

©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan19.57Database System Concepts - 7th Edition

Checkpoints (Cont.)

 During recovery we need to consider only the most recent transaction Ti that
started before the checkpoint, and transactions that started after Ti.

• Scan backwards from end of log to find the most recent <checkpoint L>
record

• Only transactions that are in L or started after the checkpoint need to be
redone or undone

• Transactions that committed or aborted before the checkpoint already have
all their updates output to stable storage.

 Some earlier part of the log may be needed for undo operations

• Continue scanning backwards till a record <Ti start> is found for every
transaction Ti in L.

• Parts of log prior to earliest <Ti start> record above are not needed for
recovery, and can be erased whenever desired.

57

©Silberschatz, Korth and Sudarshan19.58Database System Concepts - 7th Edition

Example of Checkpoints

 T1 can be ignored (updates already output to disk due to checkpoint)

 T2 and T3 redone.

 T4 undone

58

©Jan-21 Christopher W. Clifton 420

Remaining drawbacks:

• Undo logging: cannot bring backup DB copies up to date

• Redo logging: need to keep all modified blocks in memory

until commit

59

Solution: undo/redo logging!

Update  <Ti, Xid, New X val, Old X val>

page X

60

©Jan-21 Christopher W. Clifton 520

Rules

• Page X can be flushed before or after Ti commit

• Log record flushed before corresponding updated page

(WAL)

• Flush at commit (log only)

61

©Silberschatz, Korth and Sudarshan19.62Database System Concepts - 7th Edition

Recovery Algorithm (Cont.)

 Recovery from failure: Two phases

• Redo phase: replay updates of all transactions, whether they committed,
aborted, or are incomplete

• Undo phase: undo all incomplete transactions

 Redo phase:

1. Find last <checkpoint L> record, and set undo-list to L.

2. Scan forward from above <checkpoint L> record

1. Whenever a record <Ti, Xj, V1, V2> or <Ti, Xj, V2> is found, redo it by
writing V2 to Xj

2. Whenever a log record <Ti start> is found, add Ti to undo-list

3. Whenever a log record <Ti commit> or <Ti abort> is found, remove Ti

from undo-list

62

©Jan-21 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan19.63Database System Concepts - 7th Edition

Recovery Algorithm (Cont.)

 Undo phase:

1. Scan log backwards from end

1. Whenever a log record <Ti, Xj, V1, V2> is found where Ti is in undo-list
perform same actions as for transaction rollback:

1. perform undo by writing V1 to Xj.

2. write a log record <Ti , Xj, V1>

2. Whenever a log record <Ti start> is found where Ti is in undo-list,

1. Write a log record <Ti abort>

2. Remove Ti from undo-list

3. Stop when undo-list is empty

1. i.e., <Ti start> has been found for every transaction in undo-list

 After undo phase completes, normal transaction processing can commence
63

©Silberschatz, Korth and Sudarshan19.64Database System Concepts - 7th Edition

Example of Recovery

64

©Jan-21 Christopher W. Clifton 720

Non-quiesce checkpoint

L
O
G

for
undo dirty buffer

pool pages
flushed

Start-ckpt
active TR:
Ti,T2,...

end
ckpt

.........
..
.

67

Examples: What to do at recovery time?

no T1 commit

L

O

G

T1,-
a

...
Ckpt
T1

...
Ckpt
end

...
T1-
b

...

 Undo T1 (undo a,b)

68

©Jan-21 Christopher W. Clifton 820

Example

L
O
G

...
T1
a

... ...
T1
b

... ...
T1
c

...
T1
cmt

...
ckpt-
end

ckpt-s
T1

 Redo T1: (redo b,c)

69

Recovery process:

• Backwards pass (end of log  latest checkpoint start)

– construct set S of committed transactions

– undo actions of transactions not in S

• Undo pending transactions

– follow undo chains for transactions in

(checkpoint active list) - S

• Forward pass (latest checkpoint start  end of log)

– redo actions of S transactions backward pass

forward pass
start
check-
point

70

©Jan-21 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan19.73Database System Concepts - 7th Edition

Log Record Buffering

 Log record buffering: log records are buffered in main memory, instead of

being output directly to stable storage.

• Log records are output to stable storage when a block of log records in the

buffer is full, or a log force operation is executed.

 Log force is performed to commit a transaction by forcing all its log records

(including the commit record) to stable storage.

 Several log records can thus be output using a single output operation,

reducing the I/O cost.

73

©Silberschatz, Korth and Sudarshan19.74Database System Concepts - 7th Edition

Log Record Buffering (Cont.)

 The rules below must be followed if log records are buffered:

• Log records are output to stable storage in the order in which they are

created.

• Transaction Ti enters the commit state only when the log record

<Ti commit> has been output to stable storage.

• Before a block of data in main memory is output to the database, all log

records pertaining to data in that block must have been output to stable

storage.

 This rule is called the write-ahead logging or WAL rule

 Strictly speaking, WAL only requires undo information to be output

74

©Jan-21 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan19.75Database System Concepts - 7th Edition

Database Buffering

 Database maintains an in-memory buffer of data blocks

• When a new block is needed, if buffer is full an existing block needs to be

removed from buffer

• If the block chosen for removal has been updated, it must be output to disk

 The recovery algorithm supports the no-force policy: i.e., updated blocks

need not be written to disk when transaction commits

• force policy: requires updated blocks to be written at commit

 More expensive commit

 The recovery algorithm supports the steal policy: i.e., blocks containing

updates of uncommitted transactions can be written to disk, even before the

transaction commits

75

©Silberschatz, Korth and Sudarshan19.76Database System Concepts - 7th Edition

Database Buffering (Cont.)

 If a block with uncommitted updates is output to disk, log records with undo
information for the updates are output to the log on stable storage first

• (Write ahead logging)

 No updates should be in progress on a block when it is output to disk. Can be
ensured as follows.

• Before writing a data item, transaction acquires exclusive lock on block containing
the data item

• Lock can be released once the write is completed.

 Such locks held for short duration are called latches.

 To output a block to disk

1. First acquire an exclusive latch on the block

 Ensures no update can be in progress on the block

2. Then perform a log flush

3. Then output the block to disk

4. Finally release the latch on the block

76

©Jan-21 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan19.77Database System Concepts - 7th Edition

Buffer Management (Cont.)

 Database buffer can be implemented either

• In an area of real main-memory reserved for the database, or

• In virtual memory

 Implementing buffer in reserved main-memory has drawbacks:

• Memory is partitioned before-hand between database buffer and

applications, limiting flexibility.

• Needs may change, and although operating system knows best how

memory should be divided up at any time, it cannot change the partitioning

of memory.

77

©Silberschatz, Korth and Sudarshan19.78Database System Concepts - 7th Edition

Buffer Management (Cont.)

 Database buffers are generally implemented in virtual memory in spite of some
drawbacks:

• When operating system needs to evict a page that has been modified, the page is
written to swap space on disk.

• When database decides to write buffer page to disk, buffer page may be in swap
space, and may have to be read from swap space on disk and output to the
database on disk, resulting in extra I/O!

 Known as dual paging problem.

• Ideally when OS needs to evict a page from the buffer, it should pass control to
database, which in turn should

1. Output the page to database instead of to swap space (making sure to output
log records first), if it is modified

2. Release the page from the buffer, for the OS to use

• Dual paging can thus be avoided, but common operating systems do not support
such functionality.

78

©Jan-21 Christopher W. Clifton 1220

Side note: What Needs Locking?

• Multi-granularity – DB/Relation/Block/Record/Field

• But what about other objects?

– Index?

– Catalog?

– Others?

• Index issue: What if we can answer the query without
accessing the record?

– Is there a professor “Clifton”?

– Index on professor.name

79

Record Locking: Anything Else?

Disk

pages

R3

R1

R2

record id

If we lock all

data involved in read

of R1, we may prevent

an update to R2

(which may require

reorganization within

block)

80

©Jan-21 Christopher W. Clifton 1320

Solution: view DB at two levels

• Top level: record actions

– lock operations that can be used to determine information about record
• Record itself

• Index

• Undo/redo actions are logical operations

– Insert record(X,Y,Z)
• Redo: insert(X,Y,Z)

• Undo: delete

• Low level: deal with physical details

– latch page during action

– release at end of action – don’t need to follow locking rules

81

Undo does not return physical DB to

original state; only same logical state

Insert R3 Undo (delete R3)

R1 R1

R2

R1

R2

R2
R3

©Jan-21 Christopher W. Clifton 1420

Real world actions

• E.g., dispense cash at ATM

– Ti = a1 a2 …... aj …... an

• Solution

1. Execute real-world actions after commit

2. Try to make idempotent

$

83

Is real-world action idempotent?

ATM

Give$$

(amt, Tid, time)

$

give(amt)

lastTid:

time:

84

