

Physical Data Independence

- Physical Data Independence: the ability to modify the physical schema without changing the logical schema
 - Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.
- · We've talked about the logical schema
 - But what goes underneath?

PURPUE UNIVERSITY. Department of Computer Science	Isn't Implementing a Database System Simple?	
	Relations $\square >$ Statements $\square >$ Results	
		7

What's wrong with the Megatron 3000 DBMS?

- Tuple layout on disk
 - Change string from 'Cat' to 'Cats' and we have to rewrite file
 - ASCII storage is expensive
 - Deletions are expensive
- · Search expensive; no indexes
 - Cannot find tuple with given key quickly
 - Always have to read full relation

What's wrong with the Megatron 3000 DBMS?

- No concurrency control
- No reliability
 - Can lose data
 - Can leave operations half done
- No security
 - File system insecure
 - File system security is coarse

- How do we know what is in the database?
- Lousy salesman!!

22

UNIVERSITY Department of Computer Science

لتجرير PURDUE

- Concurrency Control
 Correctness, locks,...
- Transaction Processing
 Logs, deadlocks,...
- Security & Integrity

Authorization, encryption,...

Distributed Databases

Interoperation, distributed recovery,...

Storage Manager (Cont.)

- The storage manager implements several data structures as part of the physical system implementation:
 - · Data files -- store the database itself
 - Data dictionary -- stores metadata about the structure of the database, in particular the schema of the database.
 - Indices -- can provide fast access to data items. A database index provides pointers to those data items that hold a particular value.

1.28

©Silberschatz, Korth and Sudarshan

<u>Secondary storac</u> Many flavors	
-	Floppy (hard, soft)
	Removable Packs
	Winchester
	Ram disks
	Optical, CD-ROM
	Arrays
	Solid State
- Таре	Reel, cartridge
	Robots 32

- So far: Random Block Access
- What about: Reading "Next" block?

Storage Hierarchy (Cont.)

- primary storage: Fastest media but volatile (cache, main memory).
 - secondary storage: next level in hierarchy, non-volatile, moderately fast access time
 - Also called on-line storage
 - E.g., flash memory, magnetic disks
- tertiary storage: lowest level in hierarchy, non-volatile, slow access time
 - also called off-line storage and used for archival storage
 - e.g., magnetic tape, optical storage
 - Magnetic tape
 - Sequential access, 1 to 12 TB capacity
 - · A few drives with many tapes
 - Juke boxes with petabytes (1000's of TB) of storage

Database System Concepts - 7th Edition

Storage Interfaces

1.90

- Disk interface standards families
 - SATA (Serial ATA)
 - SATA 3 supports data transfer speeds of up to 6 gigabits/sec
 - SAS (Serial Attached SCSI)
 - SAS Version 3 supports 12 gigabits/sec
 - NVMe (Non-Volatile Memory Express) interface
 - Works with PCIe connectors to support lower latency and higher transfer rates
 - Supports data transfer rates of up to 24 gigabits/sec
- Disks usually connected directly to computer system
- In Storage Area Networks (SAN), a large number of disks are connected by a high-speed network to a number of servers
- In Network Attached Storage (NAS) networked storage provides a file system interface using networked file system protocol, instead of providing a disk system interface

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

SSD (Flash) Storage

- NOR flash vs NAND flash
- NAND flash
 - used widely for storage, cheaper than NOR flash
 - requires page-at-a-time read (page: 512 bytes to 4 KB)
 - 20 to 100 microseconds for a page read
 - Not much difference between sequential and random read
 - · Page can only be written once
 - Must be erased to allow rewrite
- Solid state disks
 - Use standard block-oriented disk interfaces, but store data on multiple flash storage devices internally
 - Transfer rate of up to 500 MB/sec using SATA, and up to 3 GB/sec using NVMe PCIe

1.98

©Silberschatz, Korth and Sudarshan

UNIVERSITY Department of Computer Science

PURDUE

- Database must reside on non-volatile storage
 Can cache in faster storage
- Non-volatile storage slow
 - But accessing a lot not much different than accessing a little
 - Therefore we read/write as large blocks (typically 4kb)
- Abstract performance as: α+βb
 - $-\alpha$ is seek time (abstraction of read/write setup overhead)
 - $-\beta$ is transfer rate
 - b is block size
- Rotating media: seek can dominate (but caching, sequential reads reduce this)
- · Solid state: transfer dominates
 - but erasure, protocol overheads make "seek" more than you'd expect
- Writes typically worse than reads
 - Not "done" until safe in non-volatile storage, so reduces caching benefits