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Database Applications

Database applications are usually partitioned into two or three parts

 Two-tier architecture -- the application resides at the client machine, 

where it invokes database system functionality at the server machine

 Three-tier architecture -- the client machine acts as a front end and does 

not contain any direct database calls.  

• The client end communicates with an application server, usually 

through a forms interface.  

• The application server in turn communicates with a database system 

to access data.  
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Two-tier and three-tier architectures
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Database Users
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Physical Data Independence 

• Physical Data Independence: the ability to modify the 

physical schema without changing the logical schema

– Applications depend on the logical schema

– In general, the interfaces between the various levels and 

components should be well defined so that changes in some 

parts do not seriously influence others.

• We’ve talked about the logical schema

– But what goes underneath?
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Database Engine

 A database system is partitioned into modules that deal with each of the 

responsibilities of the overall system.  

 The functional components of a database system can be divided into

• The storage manager,

• The  query processor component, 

• The transaction management component.
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Isn’t Implementing a Database System 

Simple?

7

Relations Statements Results

8

Introducing the

Database Management System



©Jan-21 Christopher W. Clifton 520

Megatron 3000 Implementation Details

9

First sign non-disclosure agreement

Megatron 3000 Implementation Details

• Relations stored in files (ASCII)

– e.g., relation R is in /usr/db/R

10

Smith # 123 # CS

Jones # 522 # EE
.
.
.
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Megatron 3000 Implementation Details

• Directory file (ASCII) in /usr/db/directory

11

R1 # A # INT # B # STR …

R2 # C # STR # A # INT …
.
.
.

Megatron 3000

Sample Sessions

12

% MEGATRON3000

Welcome to MEGATRON 3000!

&

& quit

%

.

.

.
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Megatron 3000

Sample Sessions

14

& select A,B

from R,S

where R.A = S.A and S.C > 100 #

A B

123  CAR

522  CAT

&

Megatron 3000

• To execute “select * from R where condition”:

1) Read dictionary to get R attributes

2) Read R file, for each line:

a) Check condition

b) If OK, display

17
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Megatron 3000

• To execute “select * from R

where condition | T”:

1) Process select as before

2) Write results to new file T

3) Append new line to dictionary

18

Megatron 3000

• To execute “select A,B from R,S where condition”:

1) Read dictionary to get R,S attributes

2) Read R file, for each line:

a) Read S file, for each line:

i. Create join tuple

ii. Check condition

iii. Display if OK

19
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What’s wrong with the Megatron 3000 

DBMS?

• Tuple layout on disk

– Change string from ‘Cat’ to ‘Cats’ and we have to rewrite file

– ASCII storage is expensive

– Deletions are expensive

• Search expensive; no indexes

– Cannot find tuple with given key quickly

– Always have to read full relation

20

What’s wrong with the Megatron 3000 

DBMS?

• No buffer manager

– Need caching

• Brute force query processing
• select *

from R,S

where R.A = S.A and S.B > 1000

– Do select first?

– More efficient join?

21
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What’s wrong with the Megatron 3000 

DBMS?

• No concurrency control

• No reliability

– Can lose data

– Can leave operations half done

• No security

– File system insecure

– File system security is coarse

22

What’s wrong with the Megatron 3000 

DBMS?

• No application program interface (API)

– How can a payroll program get at the data?

• No GUI

• Cannot interact with other DBMSs.

• Poor dictionary facilities

– How do we know what is in the database?

• Lousy salesman!!

23
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What do we need to know?

• File & System Structure
Records in blocks, dictionary, buffer management,…

• Indexing & Hashing
B-Trees, hashing,…

• Query Processing
Query costs, join strategies,…

• Crash Recovery
Failures, stable storage,…

25

What do we need to know?

• Concurrency Control
Correctness, locks,…

• Transaction Processing
Logs, deadlocks,…

• Security & Integrity
Authorization, encryption,…

• Distributed Databases
Interoperation, distributed recovery,…
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System Structure

26

Buffer Manager

Query Parser User

User Transaction Transaction Manager

Strategy Selector

Recovery ManagerConcurrency Control

File Manager LogLock Table M.M. Buffer

Statistical Data
Indexes

User Data System Data
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Storage Manager

 A program module that provides the interface between the low-level data stored in the 

database and the application programs and queries submitted to the system.

 The storage manager is responsible to the following tasks: 

• Interaction with the OS file manager 

• Efficient storing, retrieving and updating of data

 The storage manager components include:

• Authorization and integrity manager

• Transaction manager

• File manager

• Buffer manager
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Storage Manager (Cont.)

 The storage manager implements several data structures as part of the 

physical system implementation:

• Data files -- store the database itself

• Data dictionary -- stores metadata about the structure of the 

database, in particular the schema of the database.

• Indices -- can provide fast access to data items.  A database index 

provides pointers to those data items that hold a particular value.  

30
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Typical
Computer

Secondary
Storage

......
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Processor
Fast, slow, reduced instruction set,

with cache, pipelined…
Speed: 100  1000   1,000,000 MIPS

Memory
Fast, slow, non-volatile, read-only,…
Access time: 10-6  10-8 sec.

1 s   10 ns

Secondary storage
Many flavors:

- Disk: Floppy (hard, soft)
Removable Packs
Winchester
Ram disks
Optical, CD-ROM…
Arrays
Solid State

- Tape Reel, cartridge
Robots

32
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Focus on: “Typical Disk”

Terms: Platter, Head, Actuator
Cylinder, Track
Sector (physical),
Block (logical), Gap

…

33

“Typical” Numbers
Diameter: 1 inch  15 inches
Cylinders: 100   2000
Surfaces: 1 (CDs) 
(Tracks/cyl)   2 (floppies)  30
Sector Size: 512B  50K
Capacity: 360 KB (old floppy)

 TB
35
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Disk Access Time

block x
in memory

?

I want
block X

37

Time = Seek Time +
Rotational Delay +
Transfer Time +
Other
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Seek Time

38

3 or 5x

x

1 N

Cylinders Traveled

Time

Average Random Seek Time

39

  SEEKTIME (i  j)

S =

N(N-1)

N N

i=1 j=1
ji

“Typical” S: 5 ms  10 ms

SSD 0.1ms
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Rotational Delay

40

Head Here

Block I Want

Average Rotational Delay

41

R = 1/2 revolution

“typical” R = 2 ms (15000 RPM)
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Transfer Rate: t

• “typical” t:  100   200  MB/second

• transfer time:  block size / t

• SSD:  up to 3500 MB/s

– But this exceeds architecture transfer limits, so often limited to 

300MB/second

– Tape drives can match this!

43

Other Delays

• CPU time to issue I/O

• Contention for controller

• Contention for bus, memory

44

“Typical” Value: 0
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• So far: Random Block Access

• What about: Reading “Next” block?

45

46

If we do things right  
(e.g., Double Buffer,  Stagger Blocks…)

Time to get   =  Block Size + Negligible

block t

- skip gap

- switch track

- once in a while,

next cylinder



©Jan-21 Christopher W. Clifton 2120

47

Rule of Random I/O: Expensive

Thumb  Sequential I/O: Much less

• Ex: 1 KB Block
» Random I/O:     10 ms.

» Sequential I/O:  1 ms.

Curve Balls

• Buffering

– Disks typically “read ahead” into a buffer

– Buffer transfer rates typically 300MB/s

• “Moving” blocks

– Disk controllers mask hardware failures by moving blocks 

around

– Sequential reads may not actually be sequential…

49
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To Modify a Block?

50

To Modify Block:

(a) Read Block

(b) Modify in Memory

(c) Write Block

[(d) Verify?]

Storage Cost

74
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Storage Cost

75
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Query Processor

 The query processor components include:

• DDL  interpreter -- interprets DDL statements and records the 

definitions in the data dictionary.

• DML compiler -- translates DML statements in a query language into 

an evaluation plan consisting of low-level instructions that the query 

evaluation engine understands.

 The DML compiler performs query optimization; that is, it picks 

the lowest cost evaluation plan from among the various 

alternatives.

• Query evaluation engine -- executes low-level instructions generated 

by the DML compiler.
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Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation
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Transaction Management

 A transaction is a collection of operations that performs a single logical 

function in a database application

 Transaction-management component ensures that the database 

remains in a consistent (correct) state despite system failures (e.g., 

power failures and operating system crashes) and transaction failures.

 Concurrency-control manager controls the interaction among the 

concurrent transactions, to ensure the consistency of the database.
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Database Architecture

 Centralized databases

• One to a few cores, shared memory

 Client-server, 

• One server machine executes work on behalf of multiple client 

machines.

 Parallel databases

• Many core shared memory

• Shared disk

• Shared nothing

 Distributed databases

• Geographical distribution

• Schema/data heterogeneity
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Database Architecture 

(Centralized/Shared-Memory)
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Storage Hierarchy (Cont.)

 primary storage: Fastest media but volatile (cache, main memory).

 secondary storage: next level in hierarchy, non-volatile, moderately fast access time

• Also called on-line storage 

• E.g., flash memory, magnetic disks

 tertiary storage: lowest level in hierarchy, non-volatile, slow access time

• also called off-line storage and used for archival storage

• e.g., magnetic tape, optical storage

• Magnetic tape

 Sequential access, 1 to 12 TB capacity

 A few drives with many tapes

 Juke boxes with petabytes (1000’s of TB) of storage
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Storage Interfaces

 Disk interface standards families

• SATA (Serial ATA) 

 SATA 3 supports data transfer speeds of up to 6 gigabits/sec

• SAS (Serial Attached SCSI)

 SAS Version 3 supports 12 gigabits/sec

• NVMe (Non-Volatile Memory Express) interface

 Works with PCIe connectors to support lower latency and higher transfer rates

 Supports data transfer rates of up to 24 gigabits/sec

 Disks usually connected directly to computer system

 In Storage Area Networks (SAN), a large number of disks are connected by a high-speed network to 

a number of servers

 In Network Attached Storage (NAS) networked storage provides a file system interface using 

networked file system protocol, instead of providing a disk system interface
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SSD (Flash) Storage

 NOR flash vs NAND flash

 NAND flash 

• used widely for storage, cheaper than NOR flash

• requires page-at-a-time read (page: 512 bytes to 4 KB)

 20 to 100 microseconds for a page read

 Not much difference between sequential and random read

• Page can only be written once

 Must be erased to allow rewrite

 Solid state disks

• Use standard block-oriented disk interfaces, but store data on multiple flash storage devices 

internally

• Transfer rate of up to 500 MB/sec using SATA, and 

up to 3 GB/sec using NVMe PCIe
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SSD Storage (Cont.)

 Erase happens in units of erase block 

• Takes 2 to 5 millisecs

• Erase block typically 256 KB to 1 MB (128 to 256 pages)

 Remapping of logical page addresses to physical page addresses avoids waiting for erase

 Flash translation table tracks mapping

• also stored in a label field of flash page

• remapping carried out by flash translation layer

 After 100,000 to 1,000,000 erases, erase block becomes unreliable and cannot be used

• wear leveling
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RAID

 RAID: Redundant Arrays of Independent Disks 

• disk organization techniques that manage a large numbers of disks, providing a view of a single 

disk of 

 high capacity and high speed  by using multiple disks in parallel,  

 high reliability by storing data redundantly, so that data can be recovered even if  a disk fails 

 The chance that some disk out of a set of N disks will fail is much higher than the chance that a 

specific single disk will fail.

• E.g., a system with 100 disks, each with MTTF of 100,000 hours (approx.  11 years), will have a 

system MTTF of 1000 hours (approx. 41 days)

• Techniques for using redundancy to avoid data loss are critical with large numbers of disks

Hardware:  Key Takeaways

• Database must reside on non-volatile storage
– Can cache in faster storage

• Non-volatile storage slow
– But accessing a lot not much different than accessing a little

– Therefore we read/write as large blocks (typically 4kb)

• Abstract performance as: α+βb
– α is seek time (abstraction of read/write setup overhead)

– β is transfer rate

– b is block size

• Rotating media:  seek can dominate (but caching, sequential reads reduce this)

• Solid state:  transfer dominates
– but erasure, protocol overheads make “seek” more than you’d expect

• Writes typically worse than reads
– Not “done” until safe in non-volatile storage, so reduces caching benefits

118


