
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Building a DBMS

Prof. Chris Clifton

9 September 2021

Slides adapted from those developed by the late
Stanford University Prof. Hector Garcia-Molina

©Silberschatz, Korth and Sudarshan1.2Database System Concepts - 7th Edition

Database Applications

Database applications are usually partitioned into two or three parts

 Two-tier architecture -- the application resides at the client machine,

where it invokes database system functionality at the server machine

 Three-tier architecture -- the client machine acts as a front end and does

not contain any direct database calls.

• The client end communicates with an application server, usually

through a forms interface.

• The application server in turn communicates with a database system

to access data.

©Jan-21 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan1.3Database System Concepts - 7th Edition

Two-tier and three-tier architectures

©Silberschatz, Korth and Sudarshan1.4Database System Concepts - 7th Edition

Database Users

©Jan-21 Christopher W. Clifton 320

Physical Data Independence

• Physical Data Independence: the ability to modify the

physical schema without changing the logical schema

– Applications depend on the logical schema

– In general, the interfaces between the various levels and

components should be well defined so that changes in some

parts do not seriously influence others.

• We’ve talked about the logical schema

– But what goes underneath?

©Silberschatz, Korth and Sudarshan1.6Database System Concepts - 7th Edition

Database Engine

 A database system is partitioned into modules that deal with each of the

responsibilities of the overall system.

 The functional components of a database system can be divided into

• The storage manager,

• The query processor component,

• The transaction management component.

©Jan-21 Christopher W. Clifton 420

Isn’t Implementing a Database System

Simple?

7

Relations Statements Results

8

Introducing the

Database Management System

©Jan-21 Christopher W. Clifton 520

Megatron 3000 Implementation Details

9

First sign non-disclosure agreement

Megatron 3000 Implementation Details

• Relations stored in files (ASCII)

– e.g., relation R is in /usr/db/R

10

Smith # 123 # CS

Jones # 522 # EE
.
.
.

©Jan-21 Christopher W. Clifton 620

Megatron 3000 Implementation Details

• Directory file (ASCII) in /usr/db/directory

11

R1 # A # INT # B # STR …

R2 # C # STR # A # INT …
.
.
.

Megatron 3000

Sample Sessions

12

% MEGATRON3000

Welcome to MEGATRON 3000!

&

& quit

%

.

.

.

©Jan-21 Christopher W. Clifton 720

Megatron 3000

Sample Sessions

14

& select A,B

from R,S

where R.A = S.A and S.C > 100 #

A B

123 CAR

522 CAT

&

Megatron 3000

• To execute “select * from R where condition”:

1) Read dictionary to get R attributes

2) Read R file, for each line:

a) Check condition

b) If OK, display

17

©Jan-21 Christopher W. Clifton 820

Megatron 3000

• To execute “select * from R

where condition | T”:

1) Process select as before

2) Write results to new file T

3) Append new line to dictionary

18

Megatron 3000

• To execute “select A,B from R,S where condition”:

1) Read dictionary to get R,S attributes

2) Read R file, for each line:

a) Read S file, for each line:

i. Create join tuple

ii. Check condition

iii. Display if OK

19

©Jan-21 Christopher W. Clifton 920

What’s wrong with the Megatron 3000

DBMS?

• Tuple layout on disk

– Change string from ‘Cat’ to ‘Cats’ and we have to rewrite file

– ASCII storage is expensive

– Deletions are expensive

• Search expensive; no indexes

– Cannot find tuple with given key quickly

– Always have to read full relation

20

What’s wrong with the Megatron 3000

DBMS?

• No buffer manager

– Need caching

• Brute force query processing
• select *

from R,S

where R.A = S.A and S.B > 1000

– Do select first?

– More efficient join?

21

©Jan-21 Christopher W. Clifton 1020

What’s wrong with the Megatron 3000

DBMS?

• No concurrency control

• No reliability

– Can lose data

– Can leave operations half done

• No security

– File system insecure

– File system security is coarse

22

What’s wrong with the Megatron 3000

DBMS?

• No application program interface (API)

– How can a payroll program get at the data?

• No GUI

• Cannot interact with other DBMSs.

• Poor dictionary facilities

– How do we know what is in the database?

• Lousy salesman!!

23

©Jan-21 Christopher W. Clifton 1120

24

What do we need to know?

• File & System Structure
Records in blocks, dictionary, buffer management,…

• Indexing & Hashing
B-Trees, hashing,…

• Query Processing
Query costs, join strategies,…

• Crash Recovery
Failures, stable storage,…

25

What do we need to know?

• Concurrency Control
Correctness, locks,…

• Transaction Processing
Logs, deadlocks,…

• Security & Integrity
Authorization, encryption,…

• Distributed Databases
Interoperation, distributed recovery,…

©Jan-21 Christopher W. Clifton 1220

System Structure

26

Buffer Manager

Query Parser User

User Transaction Transaction Manager

Strategy Selector

Recovery ManagerConcurrency Control

File Manager LogLock Table M.M. Buffer

Statistical Data
Indexes

User Data System Data

©Silberschatz, Korth and Sudarshan1.27Database System Concepts - 7th Edition

Storage Manager

 A program module that provides the interface between the low-level data stored in the

database and the application programs and queries submitted to the system.

 The storage manager is responsible to the following tasks:

• Interaction with the OS file manager

• Efficient storing, retrieving and updating of data

 The storage manager components include:

• Authorization and integrity manager

• Transaction manager

• File manager

• Buffer manager

©Jan-21 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan1.28Database System Concepts - 7th Edition

Storage Manager (Cont.)

 The storage manager implements several data structures as part of the

physical system implementation:

• Data files -- store the database itself

• Data dictionary -- stores metadata about the structure of the

database, in particular the schema of the database.

• Indices -- can provide fast access to data items. A database index

provides pointers to those data items that hold a particular value.

30

P

M C

Typical
Computer

Secondary
Storage

......

©Jan-21 Christopher W. Clifton 1420

31

Processor
Fast, slow, reduced instruction set,

with cache, pipelined…
Speed: 100  1000  1,000,000 MIPS

Memory
Fast, slow, non-volatile, read-only,…
Access time: 10-6  10-8 sec.

1 s  10 ns

Secondary storage
Many flavors:

- Disk: Floppy (hard, soft)
Removable Packs
Winchester
Ram disks
Optical, CD-ROM…
Arrays
Solid State

- Tape Reel, cartridge
Robots

32

©Jan-21 Christopher W. Clifton 1520

Focus on: “Typical Disk”

Terms: Platter, Head, Actuator
Cylinder, Track
Sector (physical),
Block (logical), Gap

…

33

“Typical” Numbers
Diameter: 1 inch  15 inches
Cylinders: 100  2000
Surfaces: 1 (CDs) 
(Tracks/cyl) 2 (floppies)  30
Sector Size: 512B  50K
Capacity: 360 KB (old floppy)

 TB
35

©Jan-21 Christopher W. Clifton 1620

36

Disk Access Time

block x
in memory

?

I want
block X

37

Time = Seek Time +
Rotational Delay +
Transfer Time +
Other

©Jan-21 Christopher W. Clifton 1720

Seek Time

38

3 or 5x

x

1 N

Cylinders Traveled

Time

Average Random Seek Time

39

  SEEKTIME (i  j)

S =

N(N-1)

N N

i=1 j=1
ji

“Typical” S: 5 ms  10 ms

SSD 0.1ms

©Jan-21 Christopher W. Clifton 1820

Rotational Delay

40

Head Here

Block I Want

Average Rotational Delay

41

R = 1/2 revolution

“typical” R = 2 ms (15000 RPM)

©Jan-21 Christopher W. Clifton 1920

Transfer Rate: t

• “typical” t: 100  200 MB/second

• transfer time: block size / t

• SSD: up to 3500 MB/s

– But this exceeds architecture transfer limits, so often limited to

300MB/second

– Tape drives can match this!

43

Other Delays

• CPU time to issue I/O

• Contention for controller

• Contention for bus, memory

44

“Typical” Value: 0

©Jan-21 Christopher W. Clifton 2020

• So far: Random Block Access

• What about: Reading “Next” block?

45

46

If we do things right
(e.g., Double Buffer, Stagger Blocks…)

Time to get = Block Size + Negligible

block t

- skip gap

- switch track

- once in a while,

next cylinder

©Jan-21 Christopher W. Clifton 2120

47

Rule of Random I/O: Expensive

Thumb Sequential I/O: Much less

• Ex: 1 KB Block
» Random I/O:  10 ms.

» Sequential I/O:  1 ms.

Curve Balls

• Buffering

– Disks typically “read ahead” into a buffer

– Buffer transfer rates typically 300MB/s

• “Moving” blocks

– Disk controllers mask hardware failures by moving blocks

around

– Sequential reads may not actually be sequential…

49

©Jan-21 Christopher W. Clifton 2220

To Modify a Block?

50

To Modify Block:

(a) Read Block

(b) Modify in Memory

(c) Write Block

[(d) Verify?]

Storage Cost

74

10-9 10-6 10-3 10-0 103

access time (sec)

1015

1013

1011

109

107

105

103

cache

electronic

main

electronic

secondary

magnetic

optical

disksonline

tape

nearline

tape &

optical

disks

offline

tape

ty
p
ic

al
 c

ap
ac

it
y
 (

b
y
te

s)

from Gray & Reuter

©Jan-21 Christopher W. Clifton 2320

Storage Cost

75

10-9 10-6 10-3 10-0 103

access time (sec)

104

102

100

10-2

10-4

cache

electronic

main
electronic

secondary

magnetic

optical

disks

online

tape

nearline

tape &

optical

disks
offline

tape

d
o
ll

ar
s/

M
B

from Gray & Reuter

©Silberschatz, Korth and Sudarshan1.83Database System Concepts - 7th Edition

Query Processor

 The query processor components include:

• DDL interpreter -- interprets DDL statements and records the

definitions in the data dictionary.

• DML compiler -- translates DML statements in a query language into

an evaluation plan consisting of low-level instructions that the query

evaluation engine understands.

 The DML compiler performs query optimization; that is, it picks

the lowest cost evaluation plan from among the various

alternatives.

• Query evaluation engine -- executes low-level instructions generated

by the DML compiler.

©Jan-21 Christopher W. Clifton 2420

©Silberschatz, Korth and Sudarshan1.84Database System Concepts - 7th Edition

Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

©Silberschatz, Korth and Sudarshan1.85Database System Concepts - 7th Edition

Transaction Management

 A transaction is a collection of operations that performs a single logical

function in a database application

 Transaction-management component ensures that the database

remains in a consistent (correct) state despite system failures (e.g.,

power failures and operating system crashes) and transaction failures.

 Concurrency-control manager controls the interaction among the

concurrent transactions, to ensure the consistency of the database.

©Jan-21 Christopher W. Clifton 2520

©Silberschatz, Korth and Sudarshan1.86Database System Concepts - 7th Edition

Database Architecture

 Centralized databases

• One to a few cores, shared memory

 Client-server,

• One server machine executes work on behalf of multiple client

machines.

 Parallel databases

• Many core shared memory

• Shared disk

• Shared nothing

 Distributed databases

• Geographical distribution

• Schema/data heterogeneity

©Silberschatz, Korth and Sudarshan1.87Database System Concepts - 7th Edition

Database Architecture

(Centralized/Shared-Memory)

©Jan-21 Christopher W. Clifton 2620

©Silberschatz, Korth and Sudarshan1.90Database System Concepts - 7th Edition

Storage Hierarchy (Cont.)

 primary storage: Fastest media but volatile (cache, main memory).

 secondary storage: next level in hierarchy, non-volatile, moderately fast access time

• Also called on-line storage

• E.g., flash memory, magnetic disks

 tertiary storage: lowest level in hierarchy, non-volatile, slow access time

• also called off-line storage and used for archival storage

• e.g., magnetic tape, optical storage

• Magnetic tape

 Sequential access, 1 to 12 TB capacity

 A few drives with many tapes

 Juke boxes with petabytes (1000’s of TB) of storage

©Silberschatz, Korth and Sudarshan1.91Database System Concepts - 7th Edition

Storage Interfaces

 Disk interface standards families

• SATA (Serial ATA)

 SATA 3 supports data transfer speeds of up to 6 gigabits/sec

• SAS (Serial Attached SCSI)

 SAS Version 3 supports 12 gigabits/sec

• NVMe (Non-Volatile Memory Express) interface

 Works with PCIe connectors to support lower latency and higher transfer rates

 Supports data transfer rates of up to 24 gigabits/sec

 Disks usually connected directly to computer system

 In Storage Area Networks (SAN), a large number of disks are connected by a high-speed network to

a number of servers

 In Network Attached Storage (NAS) networked storage provides a file system interface using

networked file system protocol, instead of providing a disk system interface

©Jan-21 Christopher W. Clifton 2720

©Silberschatz, Korth and Sudarshan1.98Database System Concepts - 7th Edition

SSD (Flash) Storage

 NOR flash vs NAND flash

 NAND flash

• used widely for storage, cheaper than NOR flash

• requires page-at-a-time read (page: 512 bytes to 4 KB)

 20 to 100 microseconds for a page read

 Not much difference between sequential and random read

• Page can only be written once

 Must be erased to allow rewrite

 Solid state disks

• Use standard block-oriented disk interfaces, but store data on multiple flash storage devices

internally

• Transfer rate of up to 500 MB/sec using SATA, and

up to 3 GB/sec using NVMe PCIe

©Silberschatz, Korth and Sudarshan1.99Database System Concepts - 7th Edition

SSD Storage (Cont.)

 Erase happens in units of erase block

• Takes 2 to 5 millisecs

• Erase block typically 256 KB to 1 MB (128 to 256 pages)

 Remapping of logical page addresses to physical page addresses avoids waiting for erase

 Flash translation table tracks mapping

• also stored in a label field of flash page

• remapping carried out by flash translation layer

 After 100,000 to 1,000,000 erases, erase block becomes unreliable and cannot be used

• wear leveling

©Jan-21 Christopher W. Clifton 2820

©Silberschatz, Korth and Sudarshan1.102Database System Concepts - 7th Edition

RAID

 RAID: Redundant Arrays of Independent Disks

• disk organization techniques that manage a large numbers of disks, providing a view of a single

disk of

 high capacity and high speed by using multiple disks in parallel,

 high reliability by storing data redundantly, so that data can be recovered even if a disk fails

 The chance that some disk out of a set of N disks will fail is much higher than the chance that a

specific single disk will fail.

• E.g., a system with 100 disks, each with MTTF of 100,000 hours (approx. 11 years), will have a

system MTTF of 1000 hours (approx. 41 days)

• Techniques for using redundancy to avoid data loss are critical with large numbers of disks

Hardware: Key Takeaways

• Database must reside on non-volatile storage
– Can cache in faster storage

• Non-volatile storage slow
– But accessing a lot not much different than accessing a little

– Therefore we read/write as large blocks (typically 4kb)

• Abstract performance as: α+βb
– α is seek time (abstraction of read/write setup overhead)

– β is transfer rate

– b is block size

• Rotating media: seek can dominate (but caching, sequential reads reduce this)

• Solid state: transfer dominates
– but erasure, protocol overheads make “seek” more than you’d expect

• Writes typically worse than reads
– Not “done” until safe in non-volatile storage, so reduces caching benefits

118

