
©Jan-21 Christopher W. Clifton 120

CS 44800: Introduction To

Relational Database Systems

Indexing

Prof. Chris Clifton

28 September 2021

©Silberschatz, Korth and Sudarshan1.27Database System Concepts - 7th Edition

Secondary Indices

 Secondary index on salary field of instructor

 Index record points to a bucket that contains pointers to all the actual records with that
particular search-key value.

 Secondary indices have to be dense

©Jan-21 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan1.28Database System Concepts - 7th Edition

Indices on Multiple Keys

 Composite search key

• E.g., index on instructor relation on attributes (name, ID)

• Values are sorted lexicographically

 E.g. (John, 12121) < (John, 13514) and

(John, 13514) < (Peter, 11223)

• Can query on just name, or on (name, ID)

©Silberschatz, Korth and Sudarshan1.29Database System Concepts - 7th Edition

Index Update: Deletion

 Single-level index entry deletion:

• Dense indices – deletion of search-key is similar to file record deletion.

• Sparse indices –

 if an entry for the search key exists in the index, it is deleted by replacing the
entry in the index with the next search-key value in the file (in search-key order).

 If the next search-key value already has an index entry, the entry is deleted
instead of being replaced.

 If deleted record was the

only record in the file with

its particular search-key

value, the search-key is

deleted from the index

also.

©Jan-21 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan1.30Database System Concepts - 7th Edition

Index Update: Insertion

 Single-level index insertion:

• Perform a lookup using the search-key value of the record to be inserted.

• Dense indices – if the search-key value does not appear in the index, insert it

 Indices are maintained as sequential files

 Need to create space for new entry, overflow blocks may be required

• Sparse indices – if index stores an entry for each block of the file, no change

needs to be made to the index unless a new block is created.

 If a new block is created, the first search-key value appearing in the new block is

inserted into the index.

 Multilevel insertion and deletion: algorithms are simple extensions of the single-

level algorithms

©Silberschatz, Korth and Sudarshan1.31Database System Concepts - 7th Edition

B+-Tree Index Files

 Disadvantage of indexed-sequential files

• Performance degrades as file grows, since many overflow blocks get created.

• Periodic reorganization of entire file is required.

 Advantage of B+-tree index files:

• Automatically reorganizes itself with small, local, changes, in the face of insertions
and deletions.

• Reorganization of entire file is not required to maintain performance.

 (Minor) disadvantage of B+-trees:

• Extra insertion and deletion overhead, space overhead.

 Advantages of B+-trees outweigh disadvantages

• B+-trees are used extensively

©Jan-21 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan1.32Database System Concepts - 7th Edition

Example of B+-Tree

©Silberschatz, Korth and Sudarshan1.33Database System Concepts - 7th Edition

B+-Tree Index Files (Cont.)

A B+-tree is a rooted tree satisfying the following properties:

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and n children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

• If the root is not a leaf, it has at least 2 children.

• If the root is a leaf (that is, there are no other nodes in the tree), it can have

between 0 and (n–1) values.

©Jan-21 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan1.34Database System Concepts - 7th Edition

B+-Tree Node Structure

 Typical node

• Ki are the search-key values

• Pi are pointers to children (for non-leaf nodes) or pointers to records or buckets of

records (for leaf nodes).

 The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)

©Silberschatz, Korth and Sudarshan1.35Database System Concepts - 7th Edition

Leaf Nodes in B+-Trees

Properties of a leaf node:

 For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-key value Ki,

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than or equal to Lj’s

search-key values

 Pn points to next leaf node in search-key order

©Jan-21 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan1.36Database System Concepts - 7th Edition

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf nodes. For a non-leaf node

with m pointers:

• All the search-keys in the subtree to which P1 points are less than K1

• For 2  i  n – 1, all the search-keys in the subtree to which Pi points have values

greater than or equal to Ki–1 and less than Ki

• All the search-keys in the subtree to which Pn points have values greater than or

equal to Kn–1

• General structure

©Silberschatz, Korth and Sudarshan1.37Database System Concepts - 7th Edition

Example of B+-tree

 B+-tree for instructor file (n = 6)

 Leaf nodes must have between 3 and 5 values

((n–1)/2 and n –1, with n = 6).

 Non-leaf nodes other than root must have between 3 and 6 children ((n/2 and n with

n =6).

 Root must have at least 2 children.

©Jan-21 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan1.39Database System Concepts - 7th Edition

Queries on B+-Trees

function find(v)

1. C=root

2. while (C is not a leaf node)

1. Let i be least number s.t. V  Ki.

2. if there is no such number i then

3. Set C = last non-null pointer in C

4. else if (v = C.Ki) Set C = Pi +1

5. else set C = C.Pi

3. if for some i, Ki = V then return C.Pi

4. else return null /* no record with search-key value v exists. */

©Silberschatz, Korth and Sudarshan1.40Database System Concepts - 7th Edition

Queries on B+-Trees (Cont.)

 Range queries find all records with search key values in a given range

• See book for details of function findRange(lb, ub) which returns set of all such

records

• Real implementations usually provide an iterator interface to fetch matching

records one at a time, using a next() function

©Jan-21 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan1.41Database System Concepts - 7th Edition

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree is no more than

logn/2(K).

 A node is generally the same size as a disk block, typically 4 kilobytes

• and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

• at most log50(1,000,000) = 4 nodes are accessed in a lookup traversal from root to

leaf.

 Contrast this with a balanced binary tree with 1 million search key values — around 20

nodes are accessed in a lookup

• above difference is significant since every node access may need a disk I/O,

costing around 20 milliseconds

©Silberschatz, Korth and Sudarshan1.43Database System Concepts - 7th Edition

Updates on B+-Trees: Insertion

Assume record already added to the file. Let

l pr be pointer to the record, and let

l v be the search key value of the record

1. Find the leaf node in which the search-key value would appear

1. If there is room in the leaf node, insert (v, pr) pair in the leaf node

2. Otherwise, split the node (along with the new (v, pr) entry) as discussed in the

next slide, and propagate updates to parent nodes.

©Jan-21 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan1.44Database System Concepts - 7th Edition

Updates on B+-Trees: Insertion (Cont.)

 Splitting a leaf node:

• take the n (search-key value, pointer) pairs (including the one being inserted) in

sorted order. Place the first n/2 in the original node, and the rest in a new node.

• let the new node be p, and let k be the least key value in p. Insert (k,p) in the

parent of the node being split.

• If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found.

• In the worst case the root node may be split increasing the height of the tree by 1.

Result of splitting node containing Brandt, Califieri and Crick on inserting

Adams

Next step: insert entry with (Califieri, pointer-to-new-node) into parent

©Silberschatz, Korth and Sudarshan1.45Database System Concepts - 7th Edition

B+-Tree Insertion

B+-Tree before and after insertion of “Adams”

Affected nodes

©Jan-21 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan1.46Database System Concepts - 7th Edition

B+-Tree Insertion

B+-Tree before and after insertion of “Lamport”

Affected nodes

Affected nodes

©Silberschatz, Korth and Sudarshan1.48Database System Concepts - 7th Edition

Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Affected nodes

©Jan-21 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan1.49Database System Concepts - 7th Edition

Examples of B+-Tree Deletion (Cont.)

 Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling

 Search-key value in the parent changes as a result

Before and after deleting “Singh” and “Wu”

Affected nodes

©Silberschatz, Korth and Sudarshan1.50Database System Concepts - 7th Edition

Example of B+-tree Deletion (Cont.)

 Node with Gold and Katz became underfull, and was merged with its sibling

 Parent node becomes underfull, and is merged with its sibling

• Value separating two nodes (at the parent) is pulled down when merging

 Root node then has only one child, and is deleted

Before and after deletion of “Gold”

©Jan-21 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan1.51Database System Concepts - 7th Edition

Updates on B+-Trees: Deletion

Assume record already deleted from file. Let V be the search key value of the record, and

Pr be the pointer to the record.

 Remove (Pr, V) from the leaf node

 If the node has too few entries due to the removal, and the entries in the node and a

sibling fit into a single node, then merge siblings:

• Insert all the search-key values in the two nodes into a single node (the one on the

left), and delete the other node.

• Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted node, from its parent,

recursively using the above procedure.

©Silberschatz, Korth and Sudarshan1.52Database System Concepts - 7th Edition

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal, but the entries in the

node and a sibling do not fit into a single node, then redistribute pointers:

• Redistribute the pointers between the node and a sibling such that both have more

than the minimum number of entries.

• Update the corresponding search-key value in the parent of the node.

 The node deletions may cascade upwards till a node which has n/2 or more pointers

is found.

 If the root node has only one pointer after deletion, it is deleted and the sole child

becomes the root.

©Jan-21 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan1.53Database System Concepts - 7th Edition

Complexity of Updates

 Cost (in terms of number of I/O operations) of insertion and deletion of a single entry

proportional to height of the tree

• With K entries and maximum fanout of n, worst case complexity of insert/delete of

an entry is O(logn/2(K))

 In practice, number of I/O operations is less:

• Internal nodes tend to be in buffer

• Splits/merges are rare, most insert/delete operations only affect a leaf node

 Average node occupancy depends on insertion order

• 2/3rds with random, ½ with insertion in sorted order

©Silberschatz, Korth and Sudarshan1.55Database System Concepts - 7th Edition

B+-Tree File Organization

 B+-Tree File Organization:

• Leaf nodes in a B+-tree file organization store records, instead of pointers

• Helps keep data records clustered even when there are

insertions/deletions/updates

 Leaf nodes are still required to be half full

• Since records are larger than pointers, the maximum number of records that can be

stored in a leaf node is less than the number of pointers in a nonleaf node.

 Insertion and deletion are handled in the same way as insertion and deletion of entries

in a B+-tree index.

