
Assignment 4 Solutions

CS44800 Staff

December 12, 2021

1 Query Transformation

1. Efficient relational algebra

πT.branch name((πbranch name,assets(ρT (branch))) onT.assets<S.assets (πassets(σ(branch city=’Brooklyn’)(ρS(branch)))))

This query is efficient, because branch city=’Brooklyn’ is the part of the query that will eliminate the
most entries. By leaving this condition as the innermost one, the join will happen on the smallest set
of entries possible.

2. We can use pipelining by pushing the results of

σ′branch city=′Brooklyn

into the assets projection right before it. Then we can pipeline those results into the join before it. We
can pipeline again the left side projection of

πbranch name,assets

into the join.

Using a block nested-join is the best option since the S relation can be completely fit inside the T
relation. The other join options are not preferred because we don’t index on assets for an index join;
the relations are not sorted to use a merge join; we don’t have enough information to justify a hash
join.

3. The maximum number of I/Os we will require is equal to the size of our initial selects on T and S.
The innermost select on S.branch city uses a very small subset of S, and the project on T uses all of
T. Therefore the most I/Os we will require is equal to the size of T plus some small fraction of the size
of S. Given that we will utilize pipelining in the processing of the expression, the amount of storage
necessary is equal to the number of blocks necessary to store one tuple from T + one tuple from S.

4. The worst case occurs if all cities in S are ”Brooklyn” because then M and N would both hold the
same number of tuples, so there would be no benefit in having the inner and outer relations. However,
this is likely to never happen and restricting the right side of the join to ”Brooklyn” decreases the join
input size as much as possible, therefore, making this the most efficient expression.

2 Cost Estimation

We compute the size as the following. We want to find min(1000∗1500
max(1100,900) ,

1500∗750
max(50,100)) which we get 15000

11 .

Then we will do 15000
11 ∗ 750

max(100,50) which will get us 112500
11 which is around 10227. This is the estimated

1

size of the join result.
As indicated by the min and max selection of values, it turns out joining r1 and r2 and then join the result
with r3 is the most efficient one because joining r1 and r2 first will create an intermediate relation closer to
their original size and it is much smaller than joining r2 and r3 first.

3 Query Transformation

By applying the equivalence rule-1 (conjunctive selection operations can be deconstructed into a sequence
of individual selections) on the left hand side, we can get the following:

σθ1σθ2(E1 ./θ3 E2)
Now, by applying the equivalence rule-7 on the above expression, we can get the following:
σθ1(E1 ./θ3 (σθ2E2))
Improving query performance: by pushing the select operator on E2 before performing the join will

reduce the number of tuples to be joined. As a result, we will be able to perform the join operation faster
and hence the query performance should be improved.

4 Cost Estimation Techniques

1. We are going to assume that we have an equi-width histogram. The histogram represents the number
of tuples in a certain range of the attribute A. We will start from the beginning of the histogram to the
estimate A<v if the v is not lower than the lowest value of the histogram. If v is lower than the lowest
value, then we just return 0. Else, we will add up the number of tuples for each range in the histogram
until we reach the range where the value v is contained. Once we reach that range, we can estimate
A = v by calculating the frequency count for that range divided by the number of distinct values that
occur in that range. The sum of tuples calculated from A<v and A=v would be the estimated number
of tuples.

2. Histogram approach can give better estimate than min max when a query is the part of the stored
procedure, the value v may not be available when the query is optimized. In these cases, using
histogram method is better.
OR
It is better to use a histogram when there are large outlier values for the minimum or maximum value
since the data will be skewed. This will lead to an inaccurate cost estimation using the min max
method.

5 Serializable Schedules

Assume we have two conflicting transactions that go through the entire dataset, e.g., SELECT sum(balance)
FROM account) and UPDATE account SET balance=balance*1.01. Assuming the dataset does not fit in mem-
ory, when run serially each transaction will require reading in the entire account relation, for 2*blocks(account)
I/Os. But if we were to, for example, let the sum(balance) transaction process the first block, then do the
update on the first block, then let sum(balance) process the second block, then update that block, etc., it
requires only one pass, for 1*blocks(account) I/Os. But this would still serialize as sum transaction followed
by update transaction.

6 Two-Phase Locking

1. T1 reads A before W2 writes A, so T1 must be before T2. T1 doesn’t do anything with A after T2
writes it, and T1 doesn’t write A, so that is the only conflict on A. Only T1 operates on B, so we don’t

2

need to worry about B. T1 reads C before W2 writes C, and doesn’t operate on C after that, so again
T1 must come before T2. Since these are the only conflicts, it serializes as T1 then T2.

2. Both T1 and T2 have to acquire locks on A before reading, so with a single lock type, T2 will have
to wait until T1 has acquired all its locks. Assume T1 acquires all locks at the beginning, it can then
release the lock on A after the read. If T2 acquires locks only before reading, it is able to do the first
read, but blocks on the R2(C), so we can’t get the order given (since T1 has to hold the lock on C
until after the following operation.)

3. Switching the order of R2(C) and R1(C) would allow this to complete.

4. Since with strict 2-phase locking, we can’t release locks until commit, no it does not. The R2(A) would
have to wait until T1 is done.

5. With Shared/Exclusive locks, we can start with shared locks, so both can proceed until W2 needs an
exclusive lock on C. But at this point, R1 is done with C, and since it acquired the lock on B at the
beginning, it can release the lock on C (since it is in the second phase.)

6. No need to rearrange.

7. No, because with Strict 2-PL, T1 will not be able to release any locks (including the one on A) until
after its final write on B, so T2 will not be able to start.

7 Regular vs. Strict Two-Phase Locking

1. The regular two phase locking may result in cascading aborts as a transaction may observe uncommitted
writes. The strict two-phase locking prevents this from happening. It also allows better recoverability.

2. Consider the following example adopted from the textbook.

If there is a failure of T5 right after T7 reads A, both T7 and T6 need to rollback under regular 2pl.

3. Consider the following scenario.

3

Clearly, T1 can release locks earlier under 2PL which reduces the wait time of T2 and T3.

8 Deadlock Avoidance

8.1) Let Ti and Tj are two transactions and Ti is older than Tj . Now, let us consider the simplest form
of a deadlock situation where Ti is waiting for a lock that is held by Tj and Tj is waiting for a lock that
is held by Ti (i.e., a graph with a cycle containing two vertices). Notice that if we follow a wound-wait
protocol, the above situation will never occur. If the older transaction Ti request for a lock held by the
younger transaction Tj , it will be granted immediately and Tj will be restarted. According to the wound-
wait protocol, transactions only wait on older transactions so no cycle is created. As a result, a deadlock
cannot occur using wound-wait protocol.

8.2) Let us consider the following example schedule in the following order:
T1S(A)R(A); T2X(B)W(B); T1S(B); T3S(C)R(C); T2X(C); T3X(A)
In the above example, a deadlock will be created where T1 will wait for T2, T2 will wait for T3 and T3

will wait for T1. However, if we follow the wait-die protocol, the deadlock can be avoided. According to the
wait-die protocol, the the older transaction T1 will be allowed to wait on T2. Similarly, the older transaction
T2 will be allowed to wait for T3. However, the younger transaction T3 will not be allowed to wait for the
older transaction T1 and hence T3 will be rolled back. As a result, T3 will need to be restarted but no
deadlock will occur.

8.3) Although there might be multiple ways to prevent the unnecessary roll back, one of the approaches
is discussed below:

Suppose, a transaction Ti tries to lock an item X but unable to do so because X is locked by another
transaction Tj . The rules for the proposed Cautious Waiting mechanism are as follows:

If Tj is not blocked (not waiting for some other locked item), then Ti is blocked and allowed to wait;
otherwise abort Ti.

It can be shown that Cautious Waiting is deadlock-free. Let us consider the b(T) at which each blocked
transaction T was blocked. If two transactions Ti and Tj above both become blocked and Ti is waiting on
Tj , then b(Ti) < b(Tj), since Ti can only wait on Tj at a time when Tj is not blocked. Hence, the blocking
times form a total ordering on all blocked transactions, so NO cycle that causes deadlock can occur.

A second approach is to combine timeout and wound-wait or wait-die. Taking wait-die, for example,
when a transaction is unable to acquire a lock that is held by an older transaction, instead of immediately
aborting, it waits for a period of time. If there is no deadlock, this gives the older transaction time to release
the lock and the waiting transaction can continue. If there is a deadlock, the waiting transaction will die at
the end of the timeout, allowing the older transaction to continue. This is a tradeoff between how long we
may delay when a deadlock occurs vs. not having to redo work.

4

