
For each one over 3, +1pt extra credit
For each vulnerability under 3 not found, -2pts○

For each fix under 3 (or incorrect fixes) -2pts○
For incorrect exploit, -8pts. ○

Students are expected to have found at least 3 vulnerabilities (one from each task), fixes for three
of the vulnerabilities, and an exploit for one.

Part 1 - 20 points

Task 4: 20 points•

The ebp register typically holds the bottom of the current execution stack frame.
Ebp register is pushed onto the stack frame when a function call is made so that
the bottom of the current stack frame (the frame from before the call) can be
retrieved after the call returns.

What is does the register ebp typically hold and what ebp value is pushed on the stack in a
normal stack frame (x86 32 bit)? (1 pts.)

1.

What does the following x86 assembly instruction do (note destination address comes
second here)? (1 pts.)

2.

It treats the value stored in register ebp as a memory address, and offsets that
address by -0x20. The resulting address is then stored into register eax (not the
value found at the resulting address, but the address itself).

lea -0x20(%ebp),%eax

Navigate to the folder Coding Problem 1/ enclosed with this assignment. There you will
find a Linux executable file (ELF, 32bit, Optimization Level = 0) that has several
vulnerabilities you will exploit, "buf overflow 1." Run the program and enter a password
to familiarize yourself with the program (./buf overflow 1).
For this problem you will need to answer the following questions using readelf and
objdump or other programs of your choice.

Part 2 - 40 points

corgiesarebad

In the source code below, we can see that the programmer hardcoded a password. Use
one of the tools above to disassemble the binary and try to guess the password amongst
the strings present. Include a screenshot of the section in the executable where the
password is located. Include a screenshot entering the password and the successful
authentication into the program using the password. What is the correct password? (2
pts.)

3.

buff[] has a hardcoded size, and overflowing it will result in a non-zero number
being written into variable pass, which results in the authentication check passing
regardless of the password.

Looking carefully at the source code or disassembled file identify a potential buffer
overflow and how it can be used to bypass the password authentication code. (3 pts.)

4.

Project1 Solutions
Saturday, February 2, 2019 5:53 PM

 CS 426 Page 1

No answer needed

Run the objdump -D -s buf overflow 1 and navigate to the disassembled code for the
authenticate function. (0 pts)

5.

Answer is screenshot or copy/paste of the assembly code for authenticate
function.

Include the disassembled output of the authenticate function. (1 pts)6.

From the instruction:
5bd: c6 45 f7 00 movb $0x0,-0x9(%ebp)
We can see that the memory location at ebp-0x9 is initialized to
zero. The only variable in function authenticate that is initialized
to zero is the variable pass, so ebp-0x9 must be the memory location
of pass.

In relation to ebp, where is the variable pass stored (Hint: Use the initial value of pass to
find the instruction)? Explain how you figured this out. (2 pts)

7.

lea -0x20(%ebp),%eax
push %eax
call 400 <gets@plt>

Using gets() as a reference point, we know arguments being passed to gets() are
passed by putting them on the stack before the function call. The sequence of
instructions:

Loads the memory location ebp-0x20 onto the stack just before the
call to gets(), which only takes the buffer as an argument. So
ebp-0x20 must be the address of buff.

Students don't have to use gets() as a reference (strcmp() also
works), as long as they get the address correct and explain it.

In relation to ebp, where is the variable buff stored (Hint: Use the call to gets() as a
reference point)? Explain how you figured this out. (2 pts)

8.

Buff is at ebp-0x20, pass is at ebp-0x9. Since buff runs up to pass, we know buff
must be 0x20-0x9: 23 bytes long.

How many bytes long is the buffer that holds the entered password? Explain how you
determined this. (1 pts)

9.

24 characters. 23 to fill up the buffer and one more to write into the address of
pass.

What is the minimum number of characters a user has to enter in order to overflow the
buffer and write a nonzero value to the variable pass (Hint: the null terminator in a string
has a value of 0)? (1 pts)

10.

Student should give a screenshot of giving the password "corgisaregood" and
elevated privileges being granted.

Use a hexeditor to open the binary file and search for the correct password found at the
start of this exercise. Change the password so that the word "bad" is turned into "good".
and save the binary. Try to enter your modified password into the changed binary. Did it
work? Include a screenshot of the program running with your entry attempt. (2 pts)

11.

Fixes can include:
Briefly explain how to eliminate the vulnerabilities in this program. (2 pts)12.

 CS 426 Page 2

Not storing the password in plaintext, but a hash of it.
Stack canary's to prevent overflow.

Fixes can include:

It is not a good idea to store sensitive information in plaintext ever, even in
compiled executables.
The correct way is to secure the sensitive information cryptographically, either by
a secure hash function, or encryption.
Linux keeps a cryptographic hash of the users password, and when a user attempts
to login, it applies the same hash algorithm to the user's input, and compares the
result against the stored hash.

Is it a good idea to store sensitive information as a plaintext character array? What are
some alternatives? How does the Linux login program handle storing user passwords? (20
pts.) (2 pts)

13.

Task 5: 20 points

No answer needed

Use objdump to disassemble the binary. Navigate to portion of output for function1. (0
pts)

1.

ebp-0x28 is the start of the temp temp_string buffer.
ebp-0x28 is the start of the buffer. It can be found using gets() as a reference.

In relation to ebp, where is the beginning of the character buffer used to store the string?
(5 pts)

2.

Since the buffer starts at ebp-0x28, we know the buffer is length 40 bytes away
from ebp on the stack. We are trying to overwrite the return value, which is
located directly after the stored ebp value. This means we need to write 45 bytes
to 'bleed' into the stored return address, and 48 to fully overwrite it.
Distance from ebp to buffer: 40 bytes
Overwriting ebp: 44 bytes
Overwriting return address: 48 bytes

What is the minimum number of bytes you need to write to the character buffer in order
to overwrite the return address? (5 pts)

3.

32-bit addresses use 4 bytes.
48 bytes needed to overwrite return address: 48/4 = 12 addresses

How many bytes are in an address for a 32 bit binary? What is the minimum number of
addresses you need to write from the beginning of the character array to overwrite the
return address? (2 pts)

4.

0x08048934
What is the address of function2? (3 pts)5.

Input_gen/main.c should write the address 0x08048934 12 times.

Modify the file, Input Gen/main.c to rewrite the return address with the address for
function2 when function1 is called. Run make to compile the binary for the input
generator, Input Gen/input gen. Pipe the output of the input generator to the original
program. To do this make sure your working directory is Coding Program 2/ and then run
the command, Input Gen/input gen | ./buf overflow 2 . (2 pts)

6.

Explanation should be along the following lines:

Include your output of the programming calling function2 (Note it is ok if an error occurs
after function2 runs). Include the full source code for your input generator and explain
why the attack succeeded. (3 pts)

7.

 CS 426 Page 3

The attack works because the return address defines which code segment to
jump back to after completion of the function. Since we wrote over this
address with another function, the code will return there. After executing
function2, it crashes because the stack no longer makes sense to the
program.

In the students code, count should = 11. The for loop runs until i is <= 11,
which is 12 times.

Explanation should be along the following lines:

 CS 426 Page 4

