

CS42600: Computer Security

Cryptographic Protocols Prof. Chris Clifton 5 February 2019

1

Center for Education and Re in Information Assurance and S

PURDUE UNIVERSITY: Challenge: Ensuring *Protocol* Secure

- Failures typically not "breaking crypto"
 - Instead, identify flaws in the protocol using crypto
- · Types of flaws
 - Implementation (software vulnerability)
 - Design flaws (protocol inherently insecure)
 - Mismatch between crypto properties and protocol assumptions

PURDUE Secure Multiparty Computation

- Multiple parties 1, 2, 3, 4 each have data D_1 , D_2 , D_3 , D_4
- Want to compute $R = f(D_1, D_2, D_3, D_4)$
- · Don't want to reveal their own data
- What does "not reveal their own data" mean?
 Suppose f(x) = x?
- Answer: "Ideal" vs. "Real" model
 - Ideal model captures desired outcome

6

© 2019 Christopher W. Clifton

Common Protocol Mistakes

Simple to Exploit

- Deterministic Encryption
 E(A) = E(A)
- Poor Diffusion
 - Fails if Eve has an idea of what might be sent
- Replay

Complex to Exploit

- Side-channel attacks
 - Timing: E(A) takes longer than E(B)
 - Padding oracle
 - Compression
- Man-in-the-middle
- Weak random numbers

16

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>