
©Jan-19 Christopher W. Clifton 120

CS42600: Computer Security

Assurance

Prof. Chris Clifton

11 April 2019

4

Building Real Systems

• Theory allows formal proof of known security policies

– For components

– And collections of components

• What should the security policies be?

• Design principles:

– Guiding standards that are relatively independent of policy

©Jan-19 Christopher W. Clifton 220

5

Principle of Least Privilege

• A subject should be given only those privileges needed to

complete its task

6

Fail-Safe Defaults

• Unless a subject is given explicit access to an object, it

should be denied access

©Jan-19 Christopher W. Clifton 320

7

Economy of Mechanism

• Security mechanisms should be as simple as possible

– But no simpler

8

Complete Mediation

• All accesses to an object must be checked to ensure they

are allowed

©Jan-19 Christopher W. Clifton 420

9

Open Design

• Security of a mechanism should not depend on secrecy of

the design/implementation

10

Separation of Privilege

• A system should not grant permission based on a single

condition

©Jan-19 Christopher W. Clifton 520

11

Least Common Mechanism

• Mechanisms used to access resources should not be

shared

12

Psychological Acceptability

• Security mechanisms should not make the resource more

difficult to access than if security mechanisms were not

present

©Jan-19 Christopher W. Clifton 620

13

Secure Systems in Practice

• Formal verifications of entire systems not yet a practice
– So what do we mean by secure?

• Trustworthy: Sufficient evidence to believe system will meet
requirements
– How do we measure this?

• Assurance: Confidence a system meets security requirements
– Often based on development processes

• Trusted System: Evaluated / passed in terms of well-defined
requirements, evaluation methods

14

High-Assurance Development

Methodologies Control:

• Requirements definitions, omissions, mistakes

• System design flaws

• Hardware implementation flaws

• Software implementation errors

• System use/operation errors

• Willful system misuse

• Hardware malfunction

• Natural / environmental effects

• Evolution/maintenance/upgrades/decommission

©Jan-19 Christopher W. Clifton 720

15

Requirements

• Statement of Goals that must be satisfied

• Security Policy is a requirement

• Security Model is a means of detecting/preventing errors,

omissions in security policy

• Policy Assurance: Evidence that security policy is

complete/consistent/sound

– Achieved through use of model

16

Design Assurance

• Evidence that Design meets Security Policy

– Validation / verification techniques

– We’ll discuss these later

©Jan-19 Christopher W. Clifton 820

17

Implementation Assurance

• Evidence that the implementation meets the design

• Primarily based on standard software engineering

practice

18

Operational / Administrative Assurance

• Evidence that policy requirements maintained in operation

– Best: evidence that system can’t enter non-secure state

• Least Privilege, Separation of Privilege

• Training, documentation

©Jan-19 Christopher W. Clifton 920

19

Software Engineering

• Without adequate design/implementation, all our work for
naught

• In reality, what we’ve studied shows how to get good
requirements

• Turning these into good systems beyond the realm of
security expert

• Solution: insist on use of appropriate software
engineering methodologies

24

Evaluating Assurance

• How do we gather evidence that system meets security
requirements?

• Process-based techniques: Was system constructed using proper
methods?
– SEI CMM

– ISO 9000

• System Evaluation
– Requirements Tracing

– Representation Correspondence

– Reviews

– Formal Methods

©Jan-19 Christopher W. Clifton 1020

25

Process Based Techniques

• Software Engineering Institute Capability Maturity Model (SEI
CMM)
– Specifies levels of process maturity

– Criteria to evaluate level of an organization

• ISO 900[0-?] similar
– More directed to manufacturing than software

• Configuration Management
– Log/track changes

– Ensure process followed

– Regression testing / update, release control

26

System Evaluation

• Requirements Tracing
– Track requirement to mechanism

– Ensures nothing forgotten

– Doesn’t ensure it is correct

• Representation Correspondence
– Requirements tracing between levels

• Validating Correctness:
– Informal arguments

– Formal verification
• May use automated tools

©Jan-19 Christopher W. Clifton 1120

27

System Evaluation:

Reviews

• Formal Process of “passing” on specification / design /
implementation
– Team evaluates component

– Provides independent evidence that component meets requirements

• Review is a structured process
– Materials presented to reviewers

– Reviewers evaluate using agreed on methods

– Review meeting: collect comments and discuss

– Report: List of comments, reviewer agreement/disagreement

28

Implementation Management

• Assume a secure design

– How to ensure implementation will be secure?

• Constrained Implementation Environment

– Strong typing

– Built-in buffer checks

– Virtual machines

• Coding Standards

– Restrict how language is used

– Meeting standards eliminates use of “unsafe” features

©Jan-19 Christopher W. Clifton 1220

29

Implementation Management:

Configuration Management

• Control changes made

– Development

– Production / operation

• Version control and tracking

– Audit

• Change Authorization

• Enforce integration procedures

• Automated production tools

32

Process Guidance Working Group Test

Model

• Test Matrix: Maps requirements to lower levels
– At lowest level, test assertion

– Used to develop test cases

• Divides checks into six areas
– Discretionary Access Control

– Privileges

– Identification and Authorization

– Object Reuse

– Audit

– System Architecture Constraints

©Jan-19 Christopher W. Clifton 1320

33

Top-Level Matrix:

OS Example
Component DAC PRIV I&A OR Audit Arch

Process

Management



Process Control     

File Management     

Audit     

I/O interfaces     

I/O device drivers    

IPC management     

Memory

management

    

34

PGWG Test Model

• Each row generates lower level matrix

• Continue until test assertions possible
– Verify only root can use stime successfully

– Verify audit record generated for call to stime

• Develop test case specification for each assertion
– Call stime as root: time should change, audit generated

– Call stime as non-root: no change, fail, audit generated

• Develop test for each specification

©Jan-19 Christopher W. Clifton 1420

35

Operation/Maintenance

• Fixes / maintenance

– Hot fix: quick solution

• Possibly security testing only

• May limit functionality

– Regular fix: more thorough testing

• Reintroduce functionality while maintaining security

• Procedures to track flaws

– Reporting

– Test to detect flaw

– Regression test: ensure flaw not “unfixed”

36

Formal Evaluation

• Method to achieve Trust

– Not a guarantee of security

• Evaluation methodology includes:

– Security requirements

– Assurance requirements showing how to establish security requirements

met

– Procedures to demonstrate system meets requirements

– Metrics for results

• Examples: TCSEC (Orange Book), ITSEC, CC

©Jan-19 Christopher W. Clifton 1520

37

Formal Evaluation: Why?

• Organizations require assurance

– Defense

– Telephone / Utilities

– “Mission Critical” systems

• Formal verification of entire systems not feasible

• Instead, organizations develop formal evaluation methodologies

– Products passing evaluation are trusted

– Required to do business with the organization

