
©Jan-19 Christopher W. Clifton 120

CS42600: Computer Security

Assurance

Prof. Chris Clifton

16 April 2019

48

• International standard for evaluating assurance

• CC Documents

– Functional requirements

– Assurance requirements

– Evaluation Assurance Levels

• CC Evaluation Methodology

– Detailed process model for each level

• National Scheme

©Jan-19 Christopher W. Clifton 220

49

Common Criteria:

Origin

50

Common Criteria:

Protection Profile

Domain-specific set of security requirements

• Narrative Overview

• Domain description

• Security Environment (threats, overall
policies)

• Security Objectives: System, Environment

• IT Security Requirements

– Functional drawn from CC set

– Assurance level

• Rationale for objectives and requirements

©Jan-19 Christopher W. Clifton 320

51

Common Criteria:

Security Target

Specific requirements used to
evaluate system

• Narrative introduction

• Environment

• Security Objectives
– How met

• Security Requirements
– Environment and system

– Drawn from CC set

• Mapping of Function to
Requirements

• Claims of Conformance to
Protection Profile

52

Security Paradigm

©Jan-19 Christopher W. Clifton 420

53

Common Criteria:

Functional Requirements

• 676 page document

– Plus 430 pages for evaluation methodology

• 17 Classes

– Audit, Communication, Cryptography, User data protection,
ID/authentication, Management, Privacy, Protection of Security
Functions, Resource Utilization, Access, Trusted paths

• Several families per class

• Lattice of components in family

54

Class Example:

Communication

• Non-repudiation of origin

1. Selective Proof. Capability to request verification of origin

2. Enforced Proof. All communication includes verifiable origin

©Jan-19 Christopher W. Clifton 520

55

Class Example:

Privacy
1. Pseudonymity

1. The TSF shall ensure that [assignment: set of
users and/or subjects] are unable to determine
the real user name bound to [assignment: list of
subjects and/or operations and/or objects]

2. The TSF shall be able to provide [assignment:
number of aliases] aliases of the real user name
to [assignment: list of subjects]

3. The TSF shall [selection: determine an alias for a
user, accept the alias from the user] and verify
that it conforms to the [assignment: alias metric]

2. Reversible Pseudonimity
1. …

3. Alias Pseudonimity
1. …

56

Common Criteria:

Assurance Requirements

• 247 page document

• 7 Evaluation Levels

• 9 Classes

– Protection Profile Evaluation, Configuration Evaluation, Security Target

Evaluation

– Development, Guidance, Life cycle, Tests, Vulnerability assessment

– Composition

• Several families per class

• Lattice of components in family

©Jan-19 Christopher W. Clifton 620

57

Example:

Protection Profile Evaluation
Security environment

• In order to determine whether the IT security requirements in the PP are sufficient, it is

important that the security problem to be solved is clearly understood by all parties to

the evaluation.

1. Protection Profile, Security environment, Evaluation requirements

– Dependencies: No dependencies.

– Developer action elements:

• The PP developer shall provide a statement of TOE security environment as part of the

PP.

– Content and presentation of evidence elements:

• The statement of TOE security environment shall identify and explain any assumptions

about the intended usage of the TOE and the environment of use of the TOE.

• The statement of TOE security environment shall identify and explain any known or

presumed threats to the assets against which protection will be required, either by the

TOE or by its environment.

• The statement of TOE security environment shall identify and explain any

organisational security policies with which the TOE must comply.

– Evaluator action elements:

• The evaluator shall confirm that the information provided meets all requirements for

content and presentation of evidence.

• The evaluator shall confirm that the statement of TOE security environment is coherent

and internally consistent.

58

Example:

Delivery and Operation

Installation, generation and start-up

A. Installation, generation, and start-up procedures
– Dependencies: AGD_ADM.1 Administrator guidance

B. Developer action elements:
– The developer shall document procedures necessary for the secure installation, generation, and start-up of the TOE.

C. Content and presentation of evidence elements:
– The documentation shall describe the steps necessary for secure installation, generation, and start-up of the TOE.

D. Evaluator action elements:
– The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

– The evaluator shall determine that the installation, generation, and start-up procedures result in a secure configuration.

Generation Log

©Jan-19 Christopher W. Clifton 720

59

Common Criteria:

Evaluation Assurance Levels

1. Functionally tested

2. Structurally tested

3. Methodically tested and checked

4. Methodically designed, tested, and reviewed

5. Semiformally designed and tested

6. Semiformally verified design and tested

7. Formally verified design and tested

60

Common Criteria:

Evaluation Process

• National Authority authorizes evaluators

– U.S.: NIST accredits commercial organizations

– Fee charged for evaluation

• Team of four to six evaluators

– Develop work plan and clear with NIST

– Evaluate Protection Profile first

– If successful, can evaluate Security Target

©Jan-19 Christopher W. Clifton 820

61

Common Criteria:

Status

• Over 2000 registered products

– Seven at level 7 and above

“Data Diode”, Optical Switch, VM

– IBM OSs at Level 5

– Windows, Red Hat Linux Level 4

– Likely many more not registered

• http://commoncriteriaportal.org

62

Next: Formal Methods

• Software verification beyond scope of course

– But important to achieve security

• Limited software verification

– Verify the security subsystems

– Confine the rest

http://commoncriteriaportal.org/

©Jan-19 Christopher W. Clifton 920

63

Formal Verification:

Components

• Formal Specification defined in unambiguous

(mathematical) language

– Example: security policy models

• Implementation Language

– Generally somewhat constrained

• Formal Semantics relating the two

• Methodology to ensure implementation ensures

specifications met

64

Specification Languages

• Specify WHAT, not HOW

– Valid states of system

– Postconditions of operations

• Non-Procedural

• Typical Examples:

– Propositional / Predicate Logic (see Chapter 34)

– Temporal Logic (supports before/after conditions)

– Set-based models (e.g., formal Bell-LaPadula model of 5.2.3)

©Jan-19 Christopher W. Clifton 1020

65

Specification Languages

• Must support machine processing

– Strong typing

– Model input/output/errors

• Example: SPECIAL

– First order logic base

– Strongly typed

– VFUN: describes variables (state)

– OFUN: describe state transitions

66

Example: SPECIAL

if (r  Δ(ρ6))
then ρ6(r,v) = (i, v)

else if ([o  root(o) and parent(o) 
root(o) and parent(o)  b(s1: w)] or
[parent(o) = root(o) and
canallow(s1, o, v)] or
[o = root(o) and canallow(s1,
root(o), v)])

then ρ6(r,v) = (y, (b, m + m[s2,o]  r,
f, h))

else ρ6(r,v) = (n, v)

MODULE Bell_LaPadula_Model Give_read

Types

Subject_ID: DESIGNATOR;

Object_ID: DESIGNATOR;

Access_Model: {READ, APPEND, WRITE};

Access: STRUCT_OF(Subject_ID subject;
Object_ID object; Access_Mode mode);

Functions

VFUN active (Object_ID object) -> BOOLEAN
active: HIDDEN; INITIALLY TRUE;

VFUN access_matrix() -> Access accesses:
HIDDEN;
INITIALLY FORALL Access a: a
INSERT accesses => active(a.object);

OFUN give_access(Subject_ID giver; Access
access);
ASSERTIONS active(access.object) =
TRUE;
EFFECTS ̀ access_matrix() =
access_matrix() UNION (access);

END_MODULE

©Jan-19 Christopher W. Clifton 1120

67

Verification Methodologies

• Proof based vs. model based

– Proof: Formula define premises / conclusions

• Proof shows how to reach conclusions from premises

– Model-based: Premises and conclusions have compatible truth tables

• Full vs. property verification

– Does methodology model full system?

– Or just prove certain key properties?

• Automation – may be manual or have tool support

68

Example: Enhanced Hierarchical Development

Methodology

• Proof-based method
– Uses Boyer-Moore Theorem Prover

• Hierarchical approach
– Abstract Machines defined at each level

• specification written in SPECIAL

– Mapping Specifications define functionality in terms of machines at higher
layers

– Consistency Checker validates mappings “match”

• Compiler that maps a program into a theorem-prover understood
form

• Successfully used on MLS systems
– Few formal policy specifications outside MLS domain

©Jan-19 Christopher W. Clifton 1220

69

Alternate Approach: Combine

Specifications and Language

• Specifications defined on procedures
– Entry conditions

– Exit conditions

– Assertions

• Proof techniques ensure exit conditions / assertions met given
entry conditions
– Also run-time checking

• Examples:
– Gypsy (in book) – uses theorem prover

– CLU

– Eiffel (and derivatives) – run-time checks

70

Other Examples

• Prototype Verification System (PVS)

– Based on EHDM

– Interactive theorem-prover

• Symbolic Model Verifier

– Temporal logic based

– Notion of “path” – program represented as tree

– Statements that condition must hold at a future state, all future states, all

states on one path, etc.

©Jan-19 Christopher W. Clifton 1320

71

Is this Real?

• Formal verification of protocols

– Key management

– Protocol development

• Verification of libraries

– Entire system not verified

– But components known okay

• High risk subsystems

