Mining Time-Series and Sequence Data

- **Time-series database**
 - Consists of sequences of values or events changing with time
 - Data is recorded at regular intervals
 - Characteristic time-series components
 - Trend, cycle, seasonal, irregular

- **Applications**
 - Financial: stock price, inflation
 - Biomedical: blood pressure
 - Meteorological: precipitation
A time series can be illustrated as a time-series graph that describes a point moving with the passage of time.

- Categories of Time-Series Movements
 - Long-term or trend movements (trend curve)
 - Cyclic movements or cycle variations, e.g., business cycles
 - Seasonal movements or seasonal variations
 - i.e., almost identical patterns that a time series appears to follow during corresponding months of successive years.
 - Irregular or random movements
Estimation of Trend Curve

• The freehand method
 – Fit the curve by looking at the graph
 – Costly and barely reliable for large-scaled data mining

• The least-square method
 – Find the curve minimizing the sum of the squares of the deviation of points on the curve from the corresponding data points

• The moving-average method
 – Eliminate cyclic, seasonal and irregular patterns
 – Loss of end data
 – Sensitive to outliers

Discovery of Trends in Time-Series (1)

• Estimation of seasonal variations
 – Seasonal index
 • Set of numbers showing the relative values of a variable during the months of the year
 • E.g., if the sales during October, November, and December are 80%, 120%, and 140% of the average monthly sales for the whole year, respectively, then 80, 120, and 140 are seasonal index numbers for these months
 – Deseasonalized data
 • Data adjusted for seasonal variations
 • E.g., divide the original monthly data by the seasonal index numbers for the corresponding months
Discovery of Trends in Time-Series (2)

- Estimation of cyclic variations
 - If (approximate) periodicity of cycles occurs, cyclic index can be constructed in much the same manner as seasonal indexes
- Estimation of irregular variations
 - By adjusting the data for trend, seasonal and cyclic variations
- With the systematic analysis of the trend, cyclic, seasonal, and irregular components, it is possible to make long- or short-term predictions with reasonable quality

Similarity Search in Time-Series Analysis

- Normal database query finds exact matches
- Similarity search finds data sequences that differ only slightly from the given query sequence
- Two categories of similarity queries
 - Whole matching: find a sequence that is similar to the query sequence
 - Subsequence matching: find all pairs of similar sequences
- Typical Applications
 - Financial market
 - Market basket data analysis
 - Scientific databases
 - Medical diagnosis
Data transformation

• Many techniques for signal analysis based on frequencies
 – Transform time series into frequency domain
• Usually data-independent transformations are used
 – The transformation matrix is determined a priori
 • E.g., discrete Fourier transform (DFT), discrete wavelet transform (DWT)
 – The distance between two signals in the time domain is the same as their Euclidean distance in the frequency domain
 – DFT does a good job of concentrating energy in the first few coefficients
 – If we keep only first a few coefficients in DFT, we can compute the lower bounds of the actual distance

Multidimensional Indexing

• Multidimensional index
 – Constructed for efficient accessing using the first few Fourier coefficients
• Use the index can to retrieve the sequences that are at most a certain small distance away from the query sequence
• Perform post-processing by computing the actual distance between sequences in the time domain and discard any false matches
Subsequence Matching

- Break each sequence into a set of pieces of window with length w
- Extract the features of the subsequence inside the window
- Map each sequence to a “trail” in the feature space
- Divide the trail of each sequence into “subtrails” and represent each of them with minimum bounding rectangle
- Use a multipiece assembly algorithm to search for longer sequence matches

Enhanced similarity search methods

- Allow for gaps within a sequence or differences in offsets or amplitudes
- Normalize sequences with amplitude scaling and offset translation
- Two subsequences are considered similar if one lies within an envelope of ε width around the other, ignoring outliers
- Two sequences are said to be similar if they have enough non-overlapping time-ordered pairs of similar subsequences
- Parameters specified by a user or expert: sliding window size, width of an envelope for similarity, maximum gap, and matching fraction
Similar time series analysis

Steps for Performing a Similarity Search

- Atomic matching
 - Find all pairs of gap-free windows of a small length that are similar
- Window stitching
 - Stitch similar windows to form pairs of large similar subsequences allowing gaps between atomic matches
- Subsequence Ordering
 - Linearly order the subsequence matches to determine whether enough similar pieces exist
Similar time series analysis
Two similar mutual funds in different fund groups

VanEck International Fund

Fidelity Selective Precious Metal and Mineral Fund

Query Languages for Time Sequences

- **Time-sequence query language**
 - Should be able to specify sophisticated queries like
 - Find all of the sequences that are similar to some sequence in class A, but not similar to any sequence in class B
 - Should be able to support various kinds of queries: range queries, all-pair queries, and nearest neighbor queries

- **Shape definition language**
 - Allows users to define and query the overall shape of time sequences
 - Uses human readable series of sequence transitions or macros
 - Ignores the specific details
 - E.g., the pattern `up, Up, UP` can be used to describe increasing degrees of rising slopes
 - Macros: spike, valley, etc.
Sequential Pattern Mining

- Mining of frequently occurring patterns related to time or other sequences
- Sequential pattern mining usually concentrate on symbolic patterns
- Examples
 - Renting “Star Wars”, then “Empire Strikes Back”, then “Return of the Jedi” in that order
 - Collection of ordered events within an interval
- Applications
 - Targeted marketing
 - Customer retention
 - Weather prediction

Mining Sequences (cont.)

<table>
<thead>
<tr>
<th>CustId</th>
<th>Video sequence</th>
<th>Map Large Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{(C), (H)}</td>
<td>(C) 1</td>
</tr>
<tr>
<td>2</td>
<td>{(AB), (C), (DFG)}</td>
<td>(D) 2</td>
</tr>
<tr>
<td>3</td>
<td>{(CEG)}</td>
<td>(G) 3</td>
</tr>
<tr>
<td>4</td>
<td>{(C), (DG), (H)}</td>
<td>(DG) 4</td>
</tr>
<tr>
<td>5</td>
<td>{(H)}</td>
<td>(H) 5</td>
</tr>
</tbody>
</table>

Sequential patterns with support > 0.25

- {(C), (H)}
- {(C), (DG)}
Sequential pattern mining: Cases and Parameters

• Duration of a time sequence T
 – Sequential pattern mining can then be confined to the data within a specified duration
 – Ex. Subsequence corresponding to the year of 1999
 – Ex. Partitioned sequences, such as every year, or every week after stock crashes, or every two weeks before and after a volcano eruption

• Event folding window w
 – If $w = T$, time-insensitive frequent patterns are found
 – If $w = 0$ (no event sequence folding), sequential patterns are found where each event occurs at a distinct time instant
 – If $0 < w < T$, sequences occurring within the same period w are folded in the analysis

Sequential pattern mining: Cases and Parameters (2)

• Time interval, int, between events in the discovered pattern
 – $int = 0$: no interval gap is allowed, i.e., only strictly consecutive sequences are found
 • Ex. “Find frequent patterns occurring in consecutive weeks”
 – $min_int \leq int \leq max_int$: find patterns that are separated by at least min_int but at most max_int
 • Ex. “If a person rents movie A, it is likely she will rent movie B within 30 days” ($int \leq 30$)
 – $int = c \neq 0$: find patterns carrying an exact interval
 • Ex. “Every time when Dow Jones drops more than 5%, what will happen exactly two days later?” ($int = 2$)
Episodes and Sequential Pattern Mining Methods

- Other methods for specifying the kinds of patterns
 - Serial episodes: \(A \rightarrow B\)
 - Parallel episodes: \(A \& B\)
 - Regular expressions: \((A \mid B)C^*(D \rightarrow E)\)

- Methods for sequential pattern mining
 - Variations of Apriori-like algorithms, e.g., GSP
 - Database projection-based pattern growth
 - Similar to the frequent pattern growth without candidate generation

Periodicity Analysis

- Periodicity is everywhere: tides, seasons, daily power consumption, etc.
- Full periodicity
 - Every point in time contributes (precisely or approximately) to the periodicity
- Partial periodicity: A more general notion
 - Only some segments contribute to the periodicity
 - Jim reads NYTimes 7:00-7:30 am every week day
- Cyclic association rules
 - Associations which form cycles
- Methods
 - Full periodicity: FFT, other statistical analysis methods
 - Partial and cyclic periodicity: Variations of Apriori-like mining methods