Modeling uncertainty

- Necessary component of almost all data analysis
- Approaches to modeling uncertainty:
 - Fuzzy logic
 - Possibility theory
 - Rough sets
 - **Probability (focus in this course)**

Facts about the world:
- John is 6 feet tall.
- Mary is 7 feet tall.

...can have different interpretations:
- **Probability**: \(P(\text{Mary is taller than John}) = 1 \)
- **Fuzzy Logic**: John is 0.8 Tall, Mary is 0.9 Tall
Probability

- Probability theory (*some disagreement*)
 - Concerned with interpretation of probability
 - 17th century: Pascal and Fermat develop probability theory to analyze games of chance
- Probability calculus (*universal agreement*)
 - Concerned with manipulation of mathematical representations
 - 1933: Kolmogorov states axioms of modern probability

Probability basics

- Basic element: **Random variable**
 - Mapping from a property of objects to a variable that can take one of a set of possible values
 - X refers to random variable; x refers to a value of that random variable
- Types of random variables
 - Discrete RV has a finite set of possible values; Continuous RV can take any value within an interval
 - **Boolean**: e.g., Warning (is there a storm warning? = <yes, no>)
 - **Discrete**: e.g., Weather is one of <sunny,rainy,cloudy,snow>
 - **Continuous**: e.g., Temperature
Probability basics

• **Sample space (S)**
 – Set of all possible outcomes of an experiment

• **Event**
 – Any subset of *outcomes* contained in the sample space S
 – When events *A* and *B* have no outcomes in common they are said to be *mutually exclusive*

Examples

<table>
<thead>
<tr>
<th>Random variable(s)</th>
<th>Sample space</th>
</tr>
</thead>
<tbody>
<tr>
<td>One coin toss</td>
<td>H, T</td>
</tr>
<tr>
<td>Two coin tosses</td>
<td>HH, HT, TH, TT</td>
</tr>
<tr>
<td>Select one card</td>
<td>2♥, 2♠, ..., A♣ (52)</td>
</tr>
<tr>
<td>Play a chess game</td>
<td>Win, Lose, Draw</td>
</tr>
<tr>
<td>Inspect a part</td>
<td>Defective, OK</td>
</tr>
<tr>
<td>Cavity and toothache</td>
<td>TT, TF, FT, FF</td>
</tr>
</tbody>
</table>
Axioms of probability

- For a sample space S with possible events As, a function that associates real values with each event A is called a probability function if the following properties are satisfied:
 1. $0 \leq P(A) \leq 1$ for every A
 2. $P(S) = 1$
 3. $P(A_1 \lor A_2 \ldots \lor A_{n\in S}) = P(A_1) + P(A_2) + \ldots + P(A_n)$

 if A_1, A_2, \ldots, A_n are pairwise mutually exclusive events

Implications of axioms

- For any events A, B
 - $P(A) = 1 - P(\neg A)$
 - $P(\text{true}) = 1$ and $P(\text{false}) = 0$
 - If A and B are mutually exclusive then $P(A \land B) = 0$
 - $P(A \lor B) = P(A) + P(B) - P(A \land B)$
Probability distribution

- **Probability distribution** (i.e., probability mass function or probability density function) specifies the probability of observing every possible value of a random variable.
 - Discrete
 - Denotes probability that X will take on a particular value:
 \[P(X = x) \]
 - Continuous
 - Probability of any particular point is 0, have to consider probability within an interval:
 \[P(a < X < b) = \int_a^b p(x) \, dx \]

Joint probability

- **Joint probability distribution** for a set of random variables gives the probability of every atomic event on those random variables.
 - E.g., \(P(\text{Weather, Warning}) = \) a \(4 \times 2 \) matrix of values:

	sunny	rainy	cloudy	snow
warning = Y	0.005	0.08	0.02	0.02
warning = N	0.415	0.12	0.31	0.03
 - Every question about events can be answered by the joint distribution
Conditional probability

- **Conditional** (or posterior) probability:
 - e.g., \(P(\text{warning}=Y \mid \text{snow}=T) = 0.4 \)
 - Complete conditional distributions specify conditional probability for all possible combinations of a set of RVs:
 \[
 P(\text{warning} \mid \text{snow}) = \{P(\text{warning} = Y \mid \text{snow} = T), P(\text{warning} = N \mid \text{snow} = T)\},
 \{P(\text{warning} = Y \mid \text{snow} = F), P(\text{warning} = N \mid \text{snow} = F)\}
 \]
 - If we know more, then we can update the probability by conditioning on more evidence
 - e.g., if Windy is also given then \(P(\text{warning} \mid \text{snow}, \text{windy}) = 0.5 \)

Conditional probability

- **Definition of conditional probability:**
 \[
P(A \mid B) = \frac{P(A \land B)}{P(B)} \quad \text{if } P(B) > 0
\]
- **Product rule** gives an alternative formulation:
 \[
P(A \land B) = P(A \mid B)P(B) = P(B \mid A)P(A)
\]
- **Bayes rule** uses the product rule:
 \[
P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}
\]
Example

• Conditional probability:

\[P(A|B) = \frac{P(A \land B)}{P(B)} \quad \text{if } P(B) > 0 \]

• Example: What is \(P(\text{sunny} \mid \text{warning} = Y) \)?

<table>
<thead>
<tr>
<th></th>
<th>sunny</th>
<th>rainy</th>
<th>cloudy</th>
<th>snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>warning = Y</td>
<td>0.005</td>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>warning = N</td>
<td>0.415</td>
<td>0.12</td>
<td>0.31</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Conditional probability

• **Chain rule** is derived by successive application of product rule:

\[
P(X_1, \ldots, X_n) = P(X_n|X_1, \ldots, X_{n-1})P(X_1, \ldots, X_{n-1}) \\
= P(X_n|X_1, \ldots, X_{n-1})P(X_{n-1}|X_1, \ldots, X_{n-2})P(X_1, \ldots, X_{n-2}) \\
= \ldots \\
= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1})
\]
Marginal probability

- **Marginal** (or unconditional) probability corresponds to belief that event will occur regardless of conditioning events.

 $$P(A) = \sum_{b \in B} P(A, b)$$

- Marginalization:

 $$= \sum_{b \in B} P(A|b)P(b)$$

- Example: What is $P(\text{cloudy})$?

<table>
<thead>
<tr>
<th></th>
<th>sunny</th>
<th>rainy</th>
<th>cloudy</th>
<th>snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>warning $= Y$</td>
<td>0.005</td>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>warning $= N$</td>
<td>0.415</td>
<td>0.12</td>
<td>0.31</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Independence

- **A and B are independent iff:**
 - $P(A|B) = P(A)$ or $P(B|A) = P(B)$ or $P(A, B) = P(A)\ P(B)$
 - *Knowing B tells you nothing about A*

- **Examples**
 - Coin flip 1 and coin flip 2?
 - Weather and storm warning?
 - Weather and coin flip=H?
 - Weather and election?
Last time

- **KNN classifier**
 - Instance based learning
 - Learning: “memorizing” a dataset
 - Complexity of the hypothesis space: different values of K
- **Introduction to Statistics**
 - Basic Concepts: Random Variable, Events, Kolmogorov’s axioms
 - Probability distribution, joint and conditional

Conditional independence

- Two variables A and B are **conditionally** independent given Z iff for all values of A, B, Z:
 \[P(A, B | Z) = P(A | Z) P(B | Z) \]
- **Note**: independence does not imply conditional independence or vice versa
- A and B are independent iff:
 - $P(A|B) = P(A)$ or $P(B|A) = P(B)$ or $P(A, B) = P(A) P(B)$
 - *How is this different?*
Example 1

Conditional independence does not imply independence

- Gender and lung cancer are not independent
 \[P(C \mid G) \neq P(C) \]
- Gender and lung cancer are conditionally independent given smoking
 \[P(C \mid G, S) = P(C \mid S) \]
- Why? Because gender indicates likelihood of smoking, and smoking causes cancer

Example 2

Independence does not imply conditional independence

- Sprinkler-on and raining are independent
 \[P(S \mid R) = P(S) \]
- Sprinkler-on and raining are not conditionally independent given the grass is wet
 \[P(S \mid R, W) \neq P(S \mid R) \]
- Why? Because once we know the grass is wet, if it’s not raining, then the explanation for the grass being wet has to be the sprinkler
Expectation

- Denotes the expected value or mean value of a random variable \(X\)
 \[
 E[X] = \sum_x x \cdot p(x)
 \]

- Discrete
 \[
 E[X] = \int_x x \cdot p(x) \, dx
 \]

- Continuous
 \[
 E[h(X)] = \sum_x h(x) \cdot p(x)
 \]

- Expectation of a function
 \[
 E[aX + b] = a \cdot E[X] + b
 \]
 \[
 E[X + Y] = E[X] + E[Y]
 \]

Example

- Let \(X\) be a random variable that represents the number of heads which appear when a fair coin is tossed three times.
- \(X = \{0, 1, 2, 3\}\)
- \(P(X=0) = 1/8; P(X=1) = 3/8; P(X=2) = 3/8; P(X=3) = 1/8\)
- What is the expected value of \(X\), \(E[X]\)?
 \[
 E[X] = (0 \cdot \frac{1}{8}) + (1 \cdot \frac{3}{8}) + (2 \cdot \frac{3}{8}) + (3 \cdot \frac{1}{8})
 \]
 \[
 = \frac{3}{2}
 \]
Variance

- Denotes the expectation of the squared deviation of \(X \) from its mean
 \[
 \text{Var}(X) = E[(x - E[X])^2]
 \]
 \[
 = E[X^2] - (E[X])^2
 \]

- Standard deviation
 \[
 \sigma = \sqrt{\text{Var}(X)}
 \]

- Variance of a function
 \[
 \text{Var}(aX + b) = a^2 \cdot \text{Var}(X)
 \]

\[
\text{Var}(h(X)) = \sum_x (h(x) - E[h(x)])^2 \cdot p(x)
\]

Example

- Let \(X \) be a random variable that represents the number of heads which appear when a fair coin is tossed three times.
 \[
 E[X] = (0 \cdot \frac{1}{8}) + (1 \cdot \frac{3}{8}) + (2 \cdot \frac{3}{8}) + (3 \cdot \frac{1}{8})
 \]
 \[
 = \frac{3}{2}
 \]
- \(X = \{0, 1, 2, 3\} \)
- What is the variance of \(X \), \(\text{Var}(X) \)?

\[
\text{Var}(X) = \left(\left[0 - \frac{3}{2} \right]^2 \cdot \frac{1}{8} \right) + \left(\left[1 - \frac{3}{2} \right]^2 \cdot \frac{3}{8} \right) + \left(\left[2 - \frac{3}{2} \right]^2 \cdot \frac{3}{8} \right) + \left(\left[3 - \frac{3}{2} \right]^2 \cdot \frac{1}{8} \right)
\]

\[
= \left(\frac{9}{4} \cdot \frac{1}{8} \right) + \left(\frac{1}{4} \cdot \frac{3}{8} \right) + \left(\frac{1}{4} \cdot \frac{3}{8} \right) + \left(\frac{9}{4} \cdot \frac{1}{8} \right)
\]

\[
= \frac{3}{4}
\]
Example

- You flip a fair coin twice
 1. The first flip is heads
 2. The second flip is tails
 3. The two flips are not the same
- Are (1) and (2): independent? Conditionally independent? Neither?
- Good news!
- You will get a chance to think more about these concepts
 – See assignment 2

Common distributions

- Bernoulli
- Binomial
- Multinomial
- Poisson
- Normal
Bernoulli

- Binary variable (0/1) that takes the value of 1 with probability p
 - E.g., Outcome of a fair coin toss is Bernoulli with $p=0.5$
 $$P(x) = p^x(1-p)^{1-x}$$
 $$E[X] = 1(p) + 0(1 - p) = p$$
 $$Var(X) = E[X]^2 - (E[X])^2$$
 $$= 1^2(p) + 0^2(1 - p) - p^2$$
 $$= p(1 - p)$$

Binomial

- Describes the number of successful outcomes in n independent Bernoulli(p) trials
 - E.g., Number of heads in a sequence of 10 tosses of a fair coin is Binomial with $n=10$ and $p=0.5$
 $$P(x) = \binom{n}{x} p^x(1-p)^{n-x}$$
 $$E[X] = np$$
 $$Var[X] = np(1-p)$$
Multinomial

- Generalization of binomial to k possible outcomes; outcome i has probability p_i of occurring
 - E.g., Number of {outs, singles, doubles, triples, homeruns} in a sequence of 10 times at bat is Multinomial
- Let X_i denote the number of times the i-th outcome occurs in n trials:
 \[
P(x_1, \ldots, x_k) = \binom{n}{x_1, \ldots, x_k} p_1^{x_1} p_2^{x_2} \ldots p_k^{x_k}
 \]
 \[
 E[X_i] = np_i
 \]
 \[
 Var(X_i) = np_i(1 - p_i)
 \]

Poisson

- Describes the number of successful outcomes occurring in a fixed interval of time (or space) if the “successes” occur independently with a known average rate
 - E.g., Number of emergency calls to a service center per hour, when the average rate per hour is $\lambda=10$
 \[
P(x) = \frac{\lambda^x e^{-\lambda}}{x!}
 \]
 \[
 E[X] = \lambda
 \]
 \[
 Var[X] = \lambda
 \]
Normal (Gaussian)

- Important distribution that gives well-known bell shape
- Central limit theorem:
 - Distribution of the mean of \(n \) samples becomes normally distributed as \(n \uparrow \), regardless of the distribution of the underlying population

\[
P(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}
\]

\[
E[X] = \mu
\]

\[
Var(X) = \sigma^2
\]

Multivariate RV

- A multivariate random variable \(\mathbf{X} \) is a set \(X_1, X_2, ..., X_p \) of random variables
- \textbf{Joint} density function: \(P(\mathbf{x})=P(x_1, x_2, ..., x_p) \)
- \textbf{Marginal} density function: the density of any subset of the complete set of variables, e.g.:

\[
P(x_1) = \sum_{x_2, x_3} p(x_1, x_2, x_3)
\]

- \textbf{Conditional} density function: the density of a subset conditioned on particular values of the others, e.g.:

\[
P(x_1|x_2, x_3) = \frac{p(x_1, x_2, x_3)}{p(x_2, x_3)}
\]