Data Mining as a Process

• Data mining involves many steps
 – Machine learning is only one aspect
 – Data exploration/understanding, evaluation, etc.
• This needs to be formalized so it is more science than art
 – Steps and tasks involved
• One approach: Process Model
 – Formalize steps
 – Document what is to be done at each step
Data Mining Process

- Cross-Industry Standard Process for Data Mining (CRISP-DM)
- European Community funded effort to develop framework for data mining tasks
- Goals:
 - Encourage interoperable tools across entire data mining process
 - Take the mystery/high-priced expertise out of simple data mining tasks

Why Should There be a Standard Process?

The data mining process must be reliable and repeatable by people with little data mining background.

- Framework for recording experience
 - Allows projects to be replicated
- Aid to project planning and management
- “Comfort factor” for new adopters
 - Demonstrates maturity of Data Mining
 - Reduces dependency on “stars”
Process Standardization

• CRoss Industry Standard Process for Data Mining
• SPSS/ISL, NCR, Daimler-Benz, OHRA
• Funding from European commission
• Over 200 members of the CRISP-DM SIG worldwide
 – DM Vendors - SPSS, NCR, IBM, SAS, SGI, Data Distilleries, Syllogic, Magnify, …
 – System Suppliers / consultants - Cap Gemini, ICL Retail, Deloitte & Touche, …
 – End Users - BT, ABB, Lloyds Bank, AirTouch, Experian, …

CRISP-DM

• Non-proprietary
• Application/Industry neutral
• Tool neutral
• Focus on business issues
 – As well as technical analysis
• Framework for guidance
• Experience base
 – Templates for Analysis
CRISP-DM: Overview

• Hierarchical Model

CRISP-DM: Phases
CRISP-DM: Phases

1. Business Understanding
 - Understanding project objectives and requirements
 - Data mining problem definition
2. Data Understanding
 - Initial data collection and familiarization
 - Identify data quality issues
 - Initial, obvious results
3. Data Preparation
 - Record and attribute selection
 - Data cleansing
4. Modeling
 - Run the data mining tools
5. Evaluation
 - Determine if results meet business objectives
 - Identify business issues that should have been addressed earlier
6. Deployment
 - Put the resulting models into practice
 - Set up for repeated/continuous mining of the data

Phases and Tasks
Phase 1: Business Understanding

• Business Understanding:
 – Statement of Business Objective
 – Statement of Data Mining objective
 – Statement of Success Criteria

Business Understanding

• Determine Business Objectives
 – Background, Objectives, Success Criteria

• Assess Situation

• Determine Data Mining Goals
 – Success Criteria

• Produce Project Plan
Business Understanding: Determine Business Objectives

Activities:
- Develop organizational charts identifying divisions, departments and project groups. The chart should also identify managers’ names and responsibilities.
- Identify key persons in the business and their roles.
- Identify an internal sponsor (financial sponsor and primary user/domain expert).
- Is there a steering committee and who are the members?
- Identify the business units which are impacted by the data mining project (e.g., Marketing, Sales, Finance)

Problem area:
- Identify the problem area (e.g., Marketing, Customer Care, Business Development, etc.).
- Describe the problem in general terms.
- Check the current status of the project (e.g., Check if it is already clear within the business unit that we are performing a data mining project or do we need to advertise data mining as a key technology in the business?).
- Clarify prerequisites of the project (e.g., what is the motivation of the project? Does the business already use data mining?).
- If necessary, prepare presentations and present data mining to the business.
- Identify target groups for the project result (e.g., Do we expect a written report for top management or do we expect a running system that is used by naive end users?).
- Identify the users’ needs and expectations.

Business Understanding: Assess Situation

- Inventory of Resources
- Requirements Assumptions & Constraints
- Risks and Contingencies
- Terminology
- Costs and Benefits
Business Understanding:
Project Plan

• Stages of the project
 – Schedule
 – Resources
 – Dependencies
• Assessment of Tools and Techniques
• “Living Document”
 – Specific points for review/update

Business Understanding:
Phase Report

• Background
• Business objectives and success criteria
• Inventory of resources
• Requirements, assumptions, and constraints
• Risks and contingencies
• Terminology
• Costs and benefits
• Data mining goals and success criteria
• Initial assessment of tools and techniques
Phase 2: Data Understanding

- Business Understanding:
 - Statement of Business Objective
 - Statement of Data Mining objective
 - Statement of Success Criteria

- Data Understanding
 - Explore the data and verify the quality
 - Find outliers

Data Understanding

- Collect Initial Data
- Describe Data
- Explore Data
- Verify Data Quality

Report at each stage
- Capture information to ensure repeatability of process
Data Understanding: Data Description Report

- Format of data
- Quantity of data
- Identity of fields, other surface features

Does the data acquired satisfy requirements?

Data Understanding: Explore Data

- We’ve covered data exploration
 - Distribution, pairwise correlations, sub-populations

- Outcome
 - Need for further transformation/preparation?
 - Is quality sufficient for goals?
 - Initial findings / hypotheses
Data Understanding: Verify Data Quality

- Completeness
- Correctness
 - Random errors
 - Systematic errors
 - Missing values
- Potential solutions

Phase 3: Data Preparation

- Data preparation:
 - Takes usually over 90% of the time
 - Collection
 - Assessment
 - Consolidation and Cleaning
 - table links, aggregation level, missing values, etc
 - Data selection
 - active role in ignoring non-contributory data?
 - outliers?
 - Use of samples
 - visualization tools
 - Transformations - create new variables
Data Preparation

- Select Data
- Clean Data
- Construct Data
- Integrate Data
- Format Data

Output: Dataset and Dataset Description
– Also reports on each stage

Data Preparation: Select Data

- Decide what to use for analysis
 – Data mining goals
 – Data quality
 – Technical constraints
- Report: Rationale for inclusion/exclusion
Data Preparation: Clean Data

- Where data quality insufficient, improve
 - Select only good subsets
 - Obtain better data
 - Modeling / imputation of values

- Report: Process
 - What has been done
 - How might this impact validity of results?

Data Preparation: Construct Data

- Feature construction
 - Document how this is done

- Generate records
 - E.g., will modeling technique require records for customers who have made no purchase during a year?
Data Preparation: Integrate Data

- Data may come from multiple sources
 - Often dissimilar
- Different types of data about same entities
 - Record linkage
- Similar information about different subsets of entities
 - Feature mapping
 - Duplicate elimination
- Data Aggregation

Data Preparation: Format Data

- (Primarily) syntactic modifications to satisfy tool requirements
 - Data format
 - Unique identifiers
- Normalization
Phase 4: Modeling

- Model building
 - Selection of the modeling techniques is based upon the data mining objective
 - Modeling is an iterative process - different for supervised and unsupervised learning
 - May model for either description or prediction

Modeling

- Select Modeling Technique
- Generate Test Design
- Build Model
 - Capture parameters
- Assess Model
Types of Models

• Prediction Models for Predicting and Classifying
 – Regression algorithms (predict numeric outcome): neural networks, rule induction, CART (OLS regression, GLM)
 – Classification algorithm (predict symbolic outcome): CHAID, C5.0 (discriminant analysis, logistic regression)

• Descriptive Models for Grouping and Finding Associations
 – Clustering/Grouping algorithms: K-means, Kohonen
 – Association algorithms: apriori, GRI

Modeling: Select Modeling Technique

• General task
• Specific tool
• Rationale
How to Choose a Data Mining System?

- Commercial data mining systems have little in common
 - Different data mining functionality or methodology
 - May even work with completely different kinds of data sets
- Need multiple dimensional view in selection
- Data types: relational, transactional, text, time sequence, spatial?
- System issues
 - running on only one or on several operating systems?
 - a client/server architecture?
 - Provide Web-based interfaces and allow XML data as input and/or output?

How to Choose a Data Mining System? (2)

- Data sources
 - ASCII text files, multiple relational data sources
 - support ODBC connections (OLE DB, JDBC)?
- Data mining functions and methodologies
 - One vs. multiple data mining functions
 - One vs. variety of methods per function
 - More data mining functions and methods per function provide the user with greater flexibility and analysis power
- Coupling with DB and/or data warehouse systems
 - Four forms of coupling: no coupling, loose coupling, semitight coupling, and tight coupling
 - Ideally, a data mining system should be tightly coupled with a database system
How to Choose a Data Mining System? (3)

- **Scalability**
 - Row (or database size) scalability
 - Column (or dimension) scalability
 - Curse of dimensionality: it is much more challenging to make a system column scalable that row scalable

- **Visualization tools**
 - “A picture is worth a thousand words”
 - Visualization categories: data visualization, mining result visualization, mining process visualization, and visual data mining

- **Data mining query language and graphical user interface**
 - Easy-to-use and high-quality graphical user interface
 - Essential for user-guided, highly interactive data mining

Modeling: Generate Test Design

- **What are the metrics?**
 - Success metrics
 - Confidence in that metric

- **What data is needed to reliably evaluate?**
 - Type
 - Test/validation/?
 - Quantity to satisfy requirements
Modeling: Assess Model

- How does it fair on success metrics?
- Domain expert analysis
 - Does it make sense?
- Rank models
 - What will help business objective?
- *Iterate modeling process*
 - Does this invalidate your success metrics?

Phase 5: Evaluation

- Model Evaluation
 - Evaluation of model: how well it performed on test data
 - Methods and criteria depend on model type:
 - e.g., coincidence matrix with classification models, mean error rate with regression models
 - Interpretation of model: important or not, easy or hard depends on algorithm
Evaluation

- Evaluate Results
- Review Process
 - Anything missed?
 - Quality assurance
 - Compliance
- Determine Next Steps

Evaluation: Evaluate Results

- Does model meet business objectives?
- Test on real applications
- Findings of interest that may not relate to business objectives
Phase 6: Deployment

- Deployment
 - Determine how the results need to be utilized
 - Who needs to use them?
 - How often do they need to be used

- Deploy Data Mining results by:
 - Scoring a database
 - Utilizing results as business rules
 - Interactive scoring on-line

Deployment

- Plan Deployment
- Plan Monitoring and Maintenance
- Produce Final Report
 - Written report
 - Include (and update) previous deliverables
 - Presentation
- Review Project
 - Document experience
Deployment: Plan Deployment

This is where projects typically fail!

- Do outcomes fit within existing business processes?
 - If not, what does it take to change processes?
- What might go wrong?
 - Are contingency plans needed?
- Cost of Deployment

Deployment: Plan Monitoring and Maintenance

- Model update
 - Process to ensure correctness over time
- Are business objectives being satisfied?
- Unanticipated impacts?
Why CRISP-DM?

• The data mining process must be reliable and repeatable by people with little data mining skills

• CRISP-DM provides a uniform framework for
 – guidelines
 – experience documentation

• CRISP-DM is flexible to account for differences
 – Different business/agency problems
 – Different data