CS3700: Data Mining and Machine Learning

Machine Learning Overview
Prof. Chris Clifton
16 January 2020

The data mining process

- Data selection
- Preprocessing
- Knowledge extraction
- Interpretation and evaluation
- Mining patterns
- Machine learning
- Knowledge generation
Real-world example:

- 659,000 brokers
- 171,000 branches
- 5,100 firms
- 400,000 disclosures
Performance of NASD models

"One broker I was highly confident in ranking as 5...

Not only did I have the pleasure of meeting him at a shady warehouse location, I also negotiated his bar from the industry... This person actually used investors' funds to pay for personal expenses including his trip to attend a NASD compliance conference!

…If the model predicted this person, it would be right on target."

The data mining process

Data
- Use public data from NASD BrokerCheck

Selection
- Extract data about small firms in a few geographic locations

Target data

Preprocessing
- Create class label, temporal features

Processed data

Knowledge
- Evaluate objectively on historical data, subjectively with fraud analysts

Interpretation

Patterns
- Learn decision trees, output predictions and tree structure

Mining
Elements of Data Mining & Machine Learning Algorithms

- Task specification
- Data representation
- Knowledge representation
- Learning technique
 - Search + scoring
- Prediction and/or interpretation

Task specification

- **Objective of the person who is analyzing the data**
- **Description of the characteristics of the analysis and desired result**

- Examples:
 - From a set of *labeled examples*, devise an *understandable model* that will *accurately predict* whether a stockbroker will commit fraud in the near future.
 - From a set of *unlabeled examples*, cluster stockbrokers into a *set of homogeneous groups* based on their demographic information.
Exploratory data analysis

• Goal
 – Interact with data without clear objective

• Techniques
 – Visualization, ad hoc modeling

Descriptive modeling

• Goal
 – Summarize the data or the underlying generative process

• Techniques
 – Density estimation, cluster analysis and segmentation

Also known as: unsupervised learning
Predictive modeling

• Goal
 – Learn model to predict unknown class label values given observed attribute values
• Techniques
 – Classification, regression

Also known as: supervised learning

Pattern discovery

• Goal
 – Detect patterns and rules that describe sets of examples
• Techniques
 – Association rules, graph mining, anomaly detection

Model: global summary of a data set
Pattern: local to a subset of the data
Overview

- Task specification
- Data representation
- Knowledge representation
- Learning technique
 - Search + scoring
- Prediction and/or interpretation

Data representation

- *Choice of data structure* for representing individual and collections of measurements

- Individual measurements: single observations (e.g., person’s date of birth, product price)
- Collections of measurements: sets of observations that describe an instance (e.g., person, product)
- Choice of representation determines applicability of algorithms and can impact modeling effectiveness
- Additional issues: data sampling, data cleaning, feature construction
Individual measurements

- Unit measurements:
 - Discrete values — categorical or ordinal variables
 - Continuous values — interval and ratio variables
- Compound measurements:
 - \(< x, y >\)
 - \(< \text{value, time} >\)

Data representation: Table/vectors

<table>
<thead>
<tr>
<th>Fraud</th>
<th>Age</th>
<th>Degree</th>
<th>StartYr</th>
<th>Series7</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>22</td>
<td>Y</td>
<td>2005</td>
<td>N</td>
</tr>
<tr>
<td>-</td>
<td>25</td>
<td>N</td>
<td>2003</td>
<td>Y</td>
</tr>
<tr>
<td>-</td>
<td>31</td>
<td>Y</td>
<td>1995</td>
<td>Y</td>
</tr>
<tr>
<td>-</td>
<td>27</td>
<td>Y</td>
<td>1999</td>
<td>Y</td>
</tr>
<tr>
<td>+</td>
<td>24</td>
<td>N</td>
<td>2006</td>
<td>N</td>
</tr>
<tr>
<td>-</td>
<td>29</td>
<td>N</td>
<td>2003</td>
<td>N</td>
</tr>
</tbody>
</table>

\(N\) instances \(X\) \(p\) attributes
Data representation: Time series/sequences

Data representation: Relational/graph data
Overview

• Task specification
• Data representation
• Knowledge representation
• Learning technique
 – Search + scoring
• Prediction and/or interpretation

Knowledge representation

• **Underlying structure of the model or patterns that we seek from the data**
 – Specifies the models/patterns that could be returned as the results of the data mining algorithm
 – Defines the **model space** that algorithms search over (i.e., all possible models/patterns)

• Examples:
 – **If-then rule**
 If short closed car then toxic chemicals
 – **Conditional probability distribution**
 \[P(\text{fraud} | \text{age}, \text{degree}, \text{series7}, \text{startYr}) \]
 – **Decision tree**
Each node corresponds to a feature; each leaf a class label or probability distribution.

Knowledge representation: Classification tree

Knowledge representation: Regression model

\[y = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_0 \]

- X are predictor variables
- Y is response variable
- Example:
 - Predict number of disclosures given income and trading history
Overview

• Task specification
• Data representation
• Knowledge representation
• Learning technique
 – Search + scoring
• Prediction and/or interpretation

Learning technique

• Method to construct model or patterns from data
• **Model space**
 – Choice of knowledge representation defines a set of possible models or patterns
• **Scoring function**
 – Associates a numerical value (score) with each member of the set of models/patterns
• **Search technique**
 – Defines a method for generating members of the set of models/patterns and determining their score
Scoring function

- A numeric score assigned to each possible model in a search space, given a reference/input dataset
 - Used to judge the quality of a particular model for the domain

- Score function are statistics—estimates of a population parameter based on a sample of data

- Examples:
 - Misclassification
 - Squared error
 - Likelihood

Parameter estimation vs. structure learning

- Models have both parameters and structure
- Parameters:
 - Coefficients in regression model
 - Feature values in classification tree
 - Probability estimates in graphical model
- Structure:
 - Variables in regression model
 - Nodes in classification tree
 - Edges in graphical model

Search: Convex/smooth optimization techniques

Search: Heuristic approaches for combinatorial optimization
Example learning problem

Knowledge representation:
If-then rules

Example rule:
If \(x > 25 \) then
Else

What is the model space?
All possible thresholds

What score function?
Prediction error rate

CS3700:
Data Mining and Machine Learning

ML Overview: Continued
Prof. Chris Clifton
21 January 2020
Score function over model space

Search procedure?
Try all thresholds, select one with lowest score

Note: learning result depends on data

Classification tree

How many unique classification trees are there?
Search space

- Can we search exhaustively?
- Simplifying assumptions
 - Binary tree
 - Fixed depth
 - 10 binary attributes

<table>
<thead>
<tr>
<th>Tree depth</th>
<th>Number of trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>8×10^2</td>
</tr>
<tr>
<td>3</td>
<td>3×10^6</td>
</tr>
<tr>
<td>4</td>
<td>2×10^{13}</td>
</tr>
<tr>
<td>5</td>
<td>5×10^{25}</td>
</tr>
</tbody>
</table>

Overview

- Task specification
- Data representation
- Knowledge representation
- Learning technique
 - Search + Evaluation
- Prediction and/or interpretation
Inference and interpretation

- Prediction technique
 - Method to apply learned model to new data for prediction/analysis
 - Only applicable for predictive and some descriptive models
 - Prediction is often used during learning (i.e., search) to determine value of scoring function

- Interpretation of results
 - Objective: significance measures
 - Subjective: importance, interestingness, novelty

Example: Identifying email spam

- Task
 - Design automatic spam detector that can differentiate between labeled emails

- Data
 - Table of relative word/punctuation frequencies

- Knowledge representation
 - If/then rules with conjunctions of features

- Learning technique
 - Search over set of rules, select rule with maximum accuracy on training data

<table>
<thead>
<tr>
<th></th>
<th>george</th>
<th>you</th>
<th>your</th>
<th>hp free</th>
<th>hpl</th>
<th>!</th>
<th>our</th>
<th>re</th>
<th>edu</th>
<th>remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>spam</td>
<td>0.00</td>
<td>2.26</td>
<td>1.38</td>
<td>0.02</td>
<td>0.52</td>
<td>0.01</td>
<td>0.51</td>
<td>0.51</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>email</td>
<td>1.27</td>
<td>1.27</td>
<td>0.44</td>
<td>0.90</td>
<td>0.07</td>
<td>0.43</td>
<td>0.11</td>
<td>0.18</td>
<td>0.42</td>
<td>0.29</td>
</tr>
</tbody>
</table>

if ($\%\text{george} < 0.6$) & ($\%\text{you} > 1.5$) then spam
else email.
Example: Automatically identify digits on envelopes

- **Task**
 - Predict digit from image of handwritten envelopes
- **Data**
 - 16x16 matrix of pixel intensities
- **Knowledge representation**
 - Nearest neighbor classifier, defines tessellation over the feature space
- **Learning technique**
 - Implicit search for decision boundaries to minimize mis-classifications on training data

![Examples of handwritten digits from U.S. postal envelopes.](image)

Example: DNA expression levels in cancer tumors

- **Task**
 - **Unsupervised** learning:
 Examine DNA microarrays to determine which tumors are similar and which genes are similar
- **Data**
 - Expression levels [-6,6] for 6830 genes (rows) in 64 cancer tumors (columns) from different patients
- **Knowledge representation**
 - Clusters of similar genes/tumors
- **Learning technique**
 - Search over groups, minimize distance to group centroid

![DNA microarray data expression matrix.](image)
Summary: Data-Mining Pipeline

- **Define the task** you care about
- **Collect data** relevant for that task
- Get to know your data:
 - Find outliers, noise
 - What are the properties (features) that we care about for the task?
- **Learn a model** (function, hypothesis)
 - decisions: search space, search algorithm, scoring function
- **Evaluate** the learned model: How can you quantify performance?

Your First Classifier!

- Let’s consider one of the simplest classifiers out there.
- Assume we have a training set \((x_1, y_1) \ldots (x_n, y_n)\)
- Now we get a new instance \(x_{\text{new}}\), how can we classify it?
 - Example: Can you recommend a movie, based on user’s movie reviews?
- **Simple Solution:**
 - Find the most similar example \((x, y)\) in the training data and predict the same
 - If you liked “Fast and Furious” you’ll like “2 fast 2 furious”
- Only a single decision is needed: distance metric to compute similarity

\[
d(x_1, x_2) = 1 - \frac{x_1 \cap x_2}{x_1 \cup x_2} \quad d(x_1, x_2) = \sqrt{(x_1 - x_2)^2}
\]
K Nearest Neighbors

– Can you think about a better way?
– We can make the decision by looking at several near examples, not just one. Why would it be better?

K Nearest Neighbors

- **Learning**: just storing the training examples
- **Prediction**:
 - Find the K training example closest to x
- **Predict a label**:
 - Classification: majority vote
 - Regression: mean value
- **KNN is a type of instance based learning**
- **This is called lazy learning**, since most of the computation is done at prediction time
Let’s analyze KNN

- **What are the advantages and disadvantages of KNN?**
 - What should we care about when answering this question?

- **Complexity**
 - **Space** (how memory efficient is the algorithm?)
 - Why should we care? KNN needs to maintain all training examples!
 - **Time** (computational complexity)
 - Both at training time and at test (prediction) time
 - Datasets can be HUGE

- **Expressivity**
 - What kind of functions can we learn? Training is very fast! But *prediction is slow*
 - \(O(dN)\) for \(N\) examples with \(d\) attributes
 - *increases* with the number of examples!

Analyzing K Nearest Neighbors

- We discussed the importance of finding a good model space
 - Expressive (we can represent the right model)
 - Constrained (we can search effectively, using the data we have)

- Let’s try to characterize the model space, by looking at the **decision boundary**

- **How would it look if K=1?**

 If we define the model space to be our choice of \(K\)
 Does the complexity of the model space increase or decrease with \(K\)?
Analyzing K Nearest Neighbors

- Which model has a higher K value?
- Which model is more complex?
- Which model is more sensitive to noise?

Questions

- We know higher K values result in a smoother decision boundary.
 - Less "jagged" decision regions
 - Total number of regions will be smaller

 What will happen if we keep increasing K, up to the point that K=n?
 n = is the number of examples we have
How should we determine the value of \(K \)?

- Higher \(K \) values result in less complex functions (less expressive)
- Lower \(K \) values are more complex (more expressive)
- **How can we find the right balance between the two?**
- Option 1: Find the \(K \) that minimizes the training error.
 - Training error: after learning the classifier, what is the number of errors we get on the training data.
 - What will be this value for \(k=1, k=n, k=n/2 \)?
- Option 2: Find \(K \) that minimizes the **validation error**.
 - Validation error: set aside some of the data (validation set). what is the number of errors we get on the validation data, after training the classifier.

In general – using the training error to tune parameters will always result in a more complex hypothesis! *(why?)*
KNN Practical Consideration

- Finding the right representation is key
 - KNN is very sensitive to irrelevant attributes
- Choosing the right distance metric is important
 - Many options!
 - Popular choices:

\[
\begin{align*}
\text{Euclidean distance} & : \| x_1 - x_2 \|_2 = \sqrt{\sum_{i=1}^{n} (x_{1,i} - x_{2,i})^2} \\
\text{Manhattan distance} & : \| x_1 - x_2 \|_1 = \sum_{i=1}^{n} |x_{1,i} - x_{2,i}| \\
\text{L_p-norm} & : \begin{align*}
\text{Euclidean} & = L_2 \\
\text{Manhattan} & = L_1 \\
\| x_1 - x_2 \|_p & = \left(\sum_{i=1}^{n} |x_{1,i} - x_{2,i}|^p \right)^{\frac{1}{p}}
\end{align*}
\]
Beyond KNN

• KNN is not a statistical classifier.
• It memorizes the training data, and makes a majority vote over the K closest points.
• For example, these two cases are the same:

 ![Diagram showing two cases](image)

• What is the difference between the two scenarios?
• How can we reason about it?