
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

XML

Prof. Chris Clifton

12 October 2016

Introduction to XML

• XML: Extensible Markup Language
– Developed by WWW Consortium as more flexible

version of HTML

– Derived (as with HTML) from SGML (Standard
Generalized Markup Language)

• Goal: Add structure to document
– Describe content, not presentation

• Key idea: tags
– <title>Introduction to XML</title>

– <list><item>XML: Exten… </item>
<item>…</list>

Fall 2016 Chris Clifton - CS34800 2

©Jan-16 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan23.4Database System Concepts - 6th Edition

XML: Motivation

 Data interchange is critical in today’s networked world

 Examples:

 Banking: funds transfer

 Order processing (especially inter-company orders)

 Scientific data

– Chemistry: ChemML, …

– Genetics: BSML (Bio-Sequence Markup Language), …

 Paper flow of information between organizations is being replaced

by electronic flow of information

 Each application area has its own set of standards for representing

information

 XML has become the basis for all new generation data interchange

formats

©Silberschatz, Korth and Sudarshan23.7Database System Concepts - 6th Edition

Structure of XML Data

 Tag: label for a section of data

 Element: section of data beginning with <tagname> and ending with

matching </tagname>

 Elements must be properly nested

 Proper nesting

 <course> … <title> …. </title> </course>

 Improper nesting

 <course> … <title> …. </course> </title>

 Formally: every start tag must have a unique matching end tag,

that is in the context of the same parent element.

 Every document must have a single top-level element

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan23.8Database System Concepts - 6th Edition

Example of Nested Elements

<purchase_order>

<identifier> P-101 </identifier>

<purchaser> …. </purchaser>

<itemlist>

<item>

<identifier> RS1 </identifier>

<description> Atom powered rocket sled </description>

<quantity> 2 </quantity>

<price> 199.95 </price>

</item>

<item>

<identifier> SG2 </identifier>

<description> Superb glue </description>

<quantity> 1 </quantity>

<unit-of-measure> liter </unit-of-measure>

<price> 29.95 </price>

</item>

</itemlist>

</purchase_order>

©Silberschatz, Korth and Sudarshan23.9Database System Concepts - 6th Edition

Motivation for Nesting

 Nesting of data is useful in data transfer

 Example: elements representing item nested within an itemlist

element

 Nesting is not supported, or discouraged, in relational databases

 With multiple orders, customer name and address are stored

redundantly

 normalization replaces nested structures in each order by foreign key

into table storing customer name and address information

 Nesting is supported in object-relational databases

 But nesting is appropriate when transferring data

 External application does not have direct access to data referenced

by a foreign key

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan23.10Database System Concepts - 6th Edition

Structure of XML Data (Cont.)

 Mixture of text with sub-elements is legal in XML.

 Example:

<course>
This course is being offered for the first time in 2009.
<course id> BIO-399 </course id>
<title> Computational Biology </title>
<dept name> Biology </dept name>
<credits> 3 </credits>

</course>

 Useful for document markup, but discouraged for data
representation

©Silberschatz, Korth and Sudarshan23.11Database System Concepts - 6th Edition

Attributes

 Elements can have attributes

<course course_id= “CS-101”>

<title> Intro. to Computer Science</title>

<dept name> Comp. Sci. </dept name>

<credits> 4 </credits>

</course>

 Attributes are specified by name=value pairs inside the starting tag of an

element

 An element may have several attributes, but each attribute name can

only occur once

<course course_id = “CS-101” credits=“4”>

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan23.12Database System Concepts - 6th Edition

Attributes vs. Subelements

 Distinction between subelement and attribute

 In the context of documents, attributes are part of markup, while

subelement contents are part of the basic document contents

 In the context of data representation, the difference is unclear and

may be confusing

 Same information can be represented in two ways

– <course course_id= “CS-101”> … </course>

– <course>

<course_id>CS-101</course_id> …

</course>

 Suggestion: use attributes for identifiers of elements, and use

subelements for contents

©Silberschatz, Korth and Sudarshan23.13Database System Concepts - 6th Edition

Namespaces

 XML data has to be exchanged between organizations

 Same tag name may have different meaning in different organizations,

causing confusion on exchanged documents

 Specifying a unique string as an element name avoids confusion

 Better solution: use unique-name:element-name

 Avoid using long unique names all over document by using XML

Namespaces

<university xmlns:yale=“http://www.yale.edu”>

…
<yale:course>

<yale:course_id> CS-101 </yale:course_id>
<yale:title> Intro. to Computer Science</yale:title>
<yale:dept_name> Comp. Sci. </yale:dept_name>
<yale:credits> 4 </yale:credits>

</yale:course>
…

</university>

http://www.yale.edu/

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan23.15Database System Concepts - 6th Edition

XML Document Schema

 Database schemas constrain what information can be stored, and the

data types of stored values

 XML documents are not required to have an associated schema

 However, schemas are very important for XML data exchange

 Otherwise, a site cannot automatically interpret data received from

another site

 Two mechanisms for specifying XML schema

 Document Type Definition (DTD)

 Widely used

 XML Schema

 Newer, increasing use

©Silberschatz, Korth and Sudarshan23.16Database System Concepts - 6th Edition

Document Type Definition (DTD)

 The type of an XML document can be specified using a DTD

 DTD constraints structure of XML data

 What elements can occur

 What attributes can/must an element have

 What subelements can/must occur inside each element, and how

many times.

 DTD does not constrain data types

 All values represented as strings in XML

 DTD syntax

 <!ELEMENT element (subelements-specification) >

 <!ATTLIST element (attributes) >

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan23.17Database System Concepts - 6th Edition

Element Specification in DTD

 Subelements can be specified as

 names of elements, or

 #PCDATA (parsed character data), i.e., character strings

 EMPTY (no subelements) or ANY (anything can be a subelement)

 Example

<! ELEMENT department (dept_name building, budget)>

<! ELEMENT dept_name (#PCDATA)>

<! ELEMENT budget (#PCDATA)>

 Subelement specification may have regular expressions

<!ELEMENT university ((department | course | instructor | teaches)+)>

 Notation:

– “|” - alternatives

– “+” - 1 or more occurrences

– “*” - 0 or more occurrences

©Silberschatz, Korth and Sudarshan23.18Database System Concepts - 6th Edition

University DTD

<!DOCTYPE university [

<!ELEMENT university ((department|course|instructor|teaches)+)>

<!ELEMENT department (dept name, building, budget)>

<!ELEMENT course (course id, title, dept name, credits)>

<!ELEMENT instructor (IID, name, dept name, salary)>

<!ELEMENT teaches (IID, course id)>

<!ELEMENT dept name(#PCDATA)>

<!ELEMENT building(#PCDATA)>

<!ELEMENT budget(#PCDATA)>

<!ELEMENT course id (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT credits(#PCDATA)>

<!ELEMENT IID(#PCDATA)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT salary(#PCDATA)>

]>

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan23.19Database System Concepts - 6th Edition

Attribute Specification in DTD

 Attribute specification : for each attribute

 Name

 Type of attribute

 CDATA

 ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs)

– more on this later

 Whether

 mandatory (#REQUIRED)

 has a default value (value),

 or neither (#IMPLIED)

 Examples

 <!ATTLIST course course_id CDATA #REQUIRED>, or

 <!ATTLIST course

course_id ID #REQUIRED

dept_name IDREF #REQUIRED

instructors IDREFS #IMPLIED >

©Silberschatz, Korth and Sudarshan23.20Database System Concepts - 6th Edition

IDs and IDREFs

 An element can have at most one attribute of type ID

 The ID attribute value of each element in an XML document must be

distinct

 Thus the ID attribute value is an object identifier

 An attribute of type IDREF must contain the ID value of an element in

the same document

 An attribute of type IDREFS contains a set of (0 or more) ID values.

Each ID value must contain the ID value of an element in the same

document

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan23.21Database System Concepts - 6th Edition

University DTD with Attributes

 University DTD with ID and IDREF attribute types.

<!DOCTYPE university-3 [

<!ELEMENT university ((department|course|instructor)+)>

<!ELEMENT department (building, budget)>

<!ATTLIST department

dept_name ID #REQUIRED >

<!ELEMENT course (title, credits)>

<!ATTLIST course

course_id ID #REQUIRED

dept_name IDREF #REQUIRED

instructors IDREFS #IMPLIED >

<!ELEMENT instructor (name, salary)>

<!ATTLIST instructor

IID ID #REQUIRED

dept_name IDREF #REQUIRED >

· · · declarations for title, credits, building,

budget, name and salary · · ·

]>

©Silberschatz, Korth and Sudarshan23.22Database System Concepts - 6th Edition

XML data with ID and IDREF attributes

<university-3>

<department dept name=“Comp. Sci.”>

<building> Taylor </building>

<budget> 100000 </budget>

</department>

<department dept name=“Biology”>

<building> Watson </building>

<budget> 90000 </budget>

</department>

<course course id=“CS-101” dept name=“Comp. Sci”

instructors=“10101 83821”>

<title> Intro. to Computer Science </title>

<credits> 4 </credits>

</course>

….

<instructor IID=“10101” dept name=“Comp. Sci.”>

<name> Srinivasan </name>

<salary> 65000 </salary>

</instructor>

….

</university-3>

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan23.23Database System Concepts - 6th Edition

Limitations of DTDs

 No typing of text elements and attributes

 All values are strings, no integers, reals, etc.

 Difficult to specify unordered sets of subelements

 Order is usually irrelevant in databases (unlike in the document-

layout environment from which XML evolved)

 (A | B)* allows specification of an unordered set, but

 Cannot ensure that each of A and B occurs only once

 IDs and IDREFs are untyped

 The instructors attribute of an course may contain a reference to

another course, which is meaningless

 instructors attribute should ideally be constrained to refer to

instructor elements

©Silberschatz, Korth and Sudarshan23.24Database System Concepts - 6th Edition

XML Schema

 XML Schema is a more sophisticated schema language which

addresses the drawbacks of DTDs. Supports

 Typing of values

 E.g. integer, string, etc

 Also, constraints on min/max values

 User-defined, comlex types

 Many more features, including

 uniqueness and foreign key constraints, inheritance

 XML Schema is itself specified in XML syntax, unlike DTDs

 More-standard representation, but verbose

 XML Scheme is integrated with namespaces

 BUT: XML Schema is significantly more complicated than DTDs.

©Jan-16 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan23.25Database System Concepts - 6th Edition

XML Schema Version of Univ. DTD

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

<xs:element name=“university” type=“universityType” />

<xs:element name=“department”>

<xs:complexType>

<xs:sequence>

<xs:element name=“dept name” type=“xs:string”/>

<xs:element name=“building” type=“xs:string”/>

<xs:element name=“budget” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

….

<xs:element name=“instructor”>

<xs:complexType>

<xs:sequence>

<xs:element name=“IID” type=“xs:string”/>

<xs:element name=“name” type=“xs:string”/>

<xs:element name=“dept name” type=“xs:string”/>

<xs:element name=“salary” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

… Contd.

©Silberschatz, Korth and Sudarshan23.26Database System Concepts - 6th Edition

XML Schema Version of Univ. DTD (Cont.)

….

<xs:complexType name=“UniversityType”>

<xs:sequence>

<xs:element ref=“department” minOccurs=“0” maxOccurs=“unbounded”/>

<xs:element ref=“course” minOccurs=“0” maxOccurs=“unbounded”/>

<xs:element ref=“instructor” minOccurs=“0” maxOccurs=“unbounded”/>

<xs:element ref=“teaches” minOccurs=“0” maxOccurs=“unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:schema>

 Choice of “xs:” was ours -- any other namespace prefix could be

chosen

 Element “university” has type “universityType”, which is defined

separately

 xs:complexType is used later to create the named complex type

“UniversityType”

©Jan-16 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan23.27Database System Concepts - 6th Edition

More features of XML Schema

 Attributes specified by xs:attribute tag:

 <xs:attribute name = “dept_name”/>

 adding the attribute use = “required” means value must be

specified

 Key constraint: “department names form a key for department

elements under the root university element:

<xs:key name = “deptKey”>

<xs:selector xpath = “/university/department”/>

<xs:field xpath = “dept_name”/>

<\xs:key>

 Foreign key constraint from course to department:

<xs:keyref name = “courseDeptFKey” refer=“deptKey”>

<xs:selector xpath = “/university/course”/>

<xs:field xpath = “dept_name”/>

<\xs:keyref>

Manipulating XML Data

• XQuery

– Based on sequences, not sets

– Describe path within document (XPath)

– Variables, wildcards, etc. within path that are

matched

• Parser-based access (E.g., Java API to XML)

– Designed for string representation of document

– DOM: Tree traversal

– SAX: Streaming through document

©Jan-16 Christopher W. Clifton 1320

DOM basics

• Gives view of a tree of elements

– XMLDocument doc = parser.getDocument();

– NodeList nl =

doc.getElementByTagName(“department”);

– XMLElement name = nl.item(1);

• Interfaces to get/manipulate various parts

of XML objects

– Document, Node, Element, Attr, Text

Fall 2016 Chris Clifton - CS34800 29

SAX basics

• Event-based / streaming interface

– Create handlers for parts of object
• startElement (String uri, String localNamme, String qName,

Attributes atts)

• endElement (String uri, String localName, String qName)

• characters(char[] ch, int start, int length)

• Several others for less common object types

• Attributes: getQName, getValue

– Handler called when object encountered processing
document

• Tends to be faster than DOM, but not as flexible

Fall 2016 Chris Clifton - CS34800 30

©Jan-16 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan23.32Database System Concepts - 6th Edition

Tree Model of XML Data

 Query and transformation languages are based on a tree model of XML

data

 An XML document is modeled as a tree, with nodes corresponding to

elements and attributes

 Element nodes have child nodes, which can be attributes or

subelements

 Text in an element is modeled as a text node child of the element

 Children of a node are ordered according to their order in the XML

document

 Element and attribute nodes (except for the root node) have a single

parent, which is an element node

 The root node has a single child, which is the root element of the

document

©Silberschatz, Korth and Sudarshan23.33Database System Concepts - 6th Edition

XPath

 XPath is used to address (select) parts of documents using

path expressions

 A path expression is a sequence of steps separated by “/”

 Think of file names in a directory hierarchy

 Result of path expression: set of values that along with their

containing elements/attributes match the specified path

 E.g. /university-3/instructor/name evaluated on the university-3

data we saw earlier returns

<name>Srinivasan</name>

<name>Brandt</name>

 E.g. /university-3/instructor/name/text()

returns the same names, but without the enclosing tags

©Jan-16 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan23.34Database System Concepts - 6th Edition

XPath (Cont.)

 The initial “/” denotes root of the document (above the top-level tag)

 Path expressions are evaluated left to right

 Each step operates on the set of instances produced by the previous

step

 Selection predicates may follow any step in a path, in []

 E.g. /university-3/course[credits >= 4]

 returns account elements with a balance value greater than 400

 /university-3/course[credits] returns account elements containing

a credits subelement

 Attributes are accessed using “@”

 E.g. /university-3/course[credits >= 4]/@course_id

 returns the course identifiers of courses with credits >= 4

 IDREF attributes are not dereferenced automatically (more on this

later)

©Silberschatz, Korth and Sudarshan23.35Database System Concepts - 6th Edition

Functions in XPath

 XPath provides several functions

 The function count() at the end of a path counts the number of
elements in the set generated by the path

 E.g. /university-2/instructor[count(./teaches/course)> 2]

– Returns instructors teaching more than 2 courses (on
university-2 schema)

 Also function for testing position (1, 2, ..) of node w.r.t. siblings

 Boolean connectives and and or and function not() can be used in
predicates

 IDREFs can be referenced using function id()

 id() can also be applied to sets of references such as IDREFS and
even to strings containing multiple references separated by blanks

 E.g. /university-3/course/id(@dept_name)

 returns all department elements referred to from the
dept_name attribute of course elements.

©Jan-16 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan23.36Database System Concepts - 6th Edition

More XPath Features

 Operator “|” used to implement union

 E.g. /university-3/course[@dept name=“Comp. Sci”] |

/university-3/course[@dept name=“Biology”]

 Gives union of Comp. Sci. and Biology courses

 However, “|” cannot be nested inside other operators.

 “//” can be used to skip multiple levels of nodes

 E.g. /university-3//name

 finds any name element anywhere under the /university-3
element, regardless of the element in which it is contained.

 A step in the path can go to parents, siblings, ancestors and
descendants of the nodes generated by the previous step, not just
to the children

 “//”, described above, is a short from for specifying “all
descendants”

 “..” specifies the parent.

 doc(name) returns the root of a named document

©Silberschatz, Korth and Sudarshan23.37Database System Concepts - 6th Edition

XQuery

 XQuery is a general purpose query language for XML data

 Currently being standardized by the World Wide Web Consortium
(W3C)

 The textbook description is based on a January 2005 draft of the
standard. The final version may differ, but major features likely to
stay unchanged.

 XQuery is derived from the Quilt query language, which itself borrows
from SQL, XQL and XML-QL

 XQuery uses a
for … let … where … order by …result …

syntax
for  SQL from
where  SQL where
order by  SQL order by

result  SQL select
let allows temporary variables, and has no equivalent in SQL

©Jan-16 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan23.38Database System Concepts - 6th Edition

FLWOR Syntax in XQuery

 For clause uses XPath expressions, and variable in for clause ranges over
values in the set returned by XPath

 Simple FLWOR expression in XQuery

 find all courses with credits > 3, with each result enclosed in an

<course_id> .. </course_id> tag

for $x in /university-3/course

let $courseId := $x/@course_id

where $x/credits > 3

return <course_id> { $courseId } </course id>

 Items in the return clause are XML text unless enclosed in {}, in which
case they are evaluated

 Let clause not really needed in this query, and selection can be done In
XPath. Query can be written as:

for $x in /university-3/course[credits > 3]
return <course_id> { $x/@course_id } </course_id>

 Alternative notation for constructing elements:

return element course_id { element $x/@course_id }

©Silberschatz, Korth and Sudarshan23.39Database System Concepts - 6th Edition

Joins

 Joins are specified in a manner very similar to SQL

for $c in /university/course,

$i in /university/instructor,

$t in /university/teaches

where $c/course_id= $t/course id and $t/IID = $i/IID

return <course_instructor> { $c $i } </course_instructor>

 The same query can be expressed with the selections specified as

XPath selections:

for $c in /university/course,

$i in /university/instructor,

$t in /university/teaches[$c/course_id= $t/course_id

and $t/IID = $i/IID]

return <course_instructor> { $c $i } </course_instructor>

©Jan-16 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan23.40Database System Concepts - 6th Edition

Nested Queries

 The following query converts data from the flat structure for university
information into the nested structure used in university-1

<university-1>

{ for $d in /university/department

return <department>

{ $d/* }

{ for $c in /university/course[dept name = $d/dept name]

return $c }

</department>

}

{ for $i in /university/instructor

return <instructor>

{ $i/* }

{ for $c in /university/teaches[IID = $i/IID]

return $c/course id }

</instructor>

}

</university-1>

 $c/* denotes all the children of the node to which $c is bound, without the

enclosing top-level tag

©Silberschatz, Korth and Sudarshan23.41Database System Concepts - 6th Edition

Grouping and Aggregation

 Nested queries are used for grouping

for $d in /university/department

return

<department-total-salary>

<dept_name> { $d/dept name } </dept_name>

<total_salary> { fn:sum(

for $i in /university/instructor[dept_name = $d/dept_name]

return $i/salary

) }

</total_salary>

</department-total-salary>

©Jan-16 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan23.42Database System Concepts - 6th Edition

Sorting in XQuery

 The order by clause can be used at the end of any expression. E.g. to return
instructors sorted by name

for $i in /university/instructor
order by $i/name
return <instructor> { $i/* } </instructor>

 Use order by $i/name descending to sort in descending order

 Can sort at multiple levels of nesting (sort departments by dept_name, and by
courses sorted to course_id within each department)

<university-1> {
for $d in /university/department
order by $d/dept name
return

<department>
{ $d/* }
{ for $c in /university/course[dept name = $d/dept name]
order by $c/course id
return <course> { $c/* } </course> }

</department>
} </university-1>

©Silberschatz, Korth and Sudarshan23.43Database System Concepts - 6th Edition

Functions and Other XQuery Features

 User defined functions with the type system of XMLSchema
declare function local:dept_courses($iid as xs:string)

as element(course)*
{

for $i in /university/instructor[IID = $iid],
$c in /university/courses[dept_name = $i/dept name]

return $c
}

 Types are optional for function parameters and return values

 The * (as in decimal*) indicates a sequence of values of that type

 Universal and existential quantification in where clause predicates

 some $e in path satisfies P

 every $e in path satisfies P

 Add and fn:exists($e) to prevent empty $e from satisfying every
clause

 XQuery also supports If-then-else clauses

©Jan-16 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan23.44Database System Concepts - 6th Edition

XSLT

 A stylesheet stores formatting options for a document, usually

separately from document

 E.g. an HTML style sheet may specify font colors and sizes for

headings, etc.

 The XML Stylesheet Language (XSL) was originally designed for

generating HTML from XML

 XSLT is a general-purpose transformation language

 Can translate XML to XML, and XML to HTML

 XSLT transformations are expressed using rules called templates

 Templates combine selection using XPath with construction of

results

