PURDUE

CS34800
Information Systems

XML
Prof. Chris Clifton -
12 October 2016 Cd
senter for
JDatabase
}Systems{_/f'
9/\ A.I;/ ™
T
LI Introduction to XML
Lo %

« XML: Extensible Markup Language

— Developed by WWW Consortium as more flexible
version of HTML

— Derived (as with HTML) from SGML (Standard
Generalized Markup Language)

« Goal: Add structure to document
— Describe content, not presentation
» Key idea: tags
— <title>Introduction to XML</title>

— <list><item>XML: Exten... </item>
<item>...</list>

Fall 2016 Chris Clifton - CS34800 2

© 2016 Christopher W. Clifton

ﬂ XML: Motivation

s

m Data interchange is critical in today’s networked world
Examples:
» Banking: funds transfer
» Order processing (especially inter-company orders)
» Scientific data
Chemistry: ChemML, ...
Genetics: BSML (Bio-Sequence Markup Language), ...

Paper flow of information between organizations is being replaced
by electronic flow of information

B Each application area has its own set of standards for representing

information
m XML has become the basis for all new generation data interchange
formats
Database System Concepts - 6t Edition 23.4 ©Silberschatz, Korth and Sudarshan

ﬂ Structure of XML Data

s

® Tag: label for a section of data

Element: section of data beginning with <tagname> and ending with
matching </tagname>

m Elements must be properly nested
Proper nesting
» <course> ... <title> </title> </course>
Improper nesting
» <course> ... <title> </course> </title>

Formally: every start tag must have a unique matching end tag,
that is in the context of the same parent element.

m Every document must have a single top-level element

Database System Concepts - 6t" Edition 23.7 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

Example of Nested Elements

<purchase_order>
<identifier> P-101 </identifier>
<purchaser> </purchaser>
<itemlist>
<item>
<identifier> RS1 </identifier>
<description>Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price>199.95 </price>
</item>
<item>
<identifier> SG2 </identifier>
<description> Superb glue </description>
<quantity> 1 </quantity>
<unit-of-measure> liter </unit-of-measure>
<price>29.95 </price>
</item>
</itemlist>
</purchase_order>

Database System Concepts - 6t Edition 23.8 ©Silberschatz, Korth and Sudarshan

Motivation for Nesting

m Nesting of data is useful in data transfer

Example: elements representing item nested within an itemlist
element

m Nesting is not supported, or discouraged, in relational databases

With multiple orders, customer name and address are stored
redundantly

normalization replaces nested structures in each order by foreign key
into table storing customer name and address information

Nesting is supported in object-relational databases
B But nesting is appropriate when transferring data

External application does not have direct access to data referenced
by a foreign key

Database System Concepts - 6" Edition 23.9 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

Structure of XML Data (Cont.)

B Mixture of text with sub-elements is legal in XML.
Example:

<course>
This course is being offered for the first time in 2009.
<course id> BIO-399 </course id>
<title> Computational Biology </title>
<dept name> Biology </dept name>
<credits> 3 </credits>
</course>

Useful for document markup, but discouraged for data
representation

Database System Concepts - 6t Edition 23.10 ©Silberschatz, Korth and Sudarshan

Attributes

® Elements can have attributes
<course course_id=“CS-101">
<title> Intro. to Computer Science</title>
<dept name> Comp. Sci. </dept name>
<credits> 4 </credits>
</course>

m Attributes are specified by name=value pairs inside the starting tag of an
element

B An element may have several attributes, but each attribute name can
only occur once

<course course_id=“CS-101" credits="4">

Database System Concepts - 6" Edition 23.11 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

Attributes vs. Subelements

m Distinction between subelement and attribute

In the context of documents, attributes are part of markup, while
subelement contents are part of the basic document contents

In the context of data representation, the difference is unclear and
may be confusing

» Same information can be represented in two ways
<course course_id="“CS-101"> ... </course>

<course>
<course_id>CS-101</course_id> ...
</course>

Suggestion: use attributes for identifiers of elements, and use
subelements for contents

Database System Concepts - 6t Edition 23.12 ©Silberschatz, Korth and Sudarshan

Namespaces

XML data has to be exchanged between organizations

Same tag name may have different meaning in different organizations,
causing confusion on exchanged documents

Specifying a unique string as an element name avoids confusion
Better solution: use unigue-name:element-name

Avoid using long unique names all over document by using XML
Namespaces

<university xmIns:yale=*

<yale:course>
<yale:course_id>CS-101 </yale:course_id>
<yale:title> Intro. to Computer Science</yale:title>
<yale:dept_name> Comp. Sci. </yale:dept_name>
<yale:credits> 4 </yale:credits>

</yale:course>

</university>

Database System Concepts - 6t" Edition 23.13 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

http://www.yale.edu/

XML Document Schema

m Database schemas constrain what information can be stored, and the
data types of stored values

® XML documents are not required to have an associated schema
However, schemas are very important for XML data exchange

Otherwise, a site cannot automatically interpret data received from
another site

® Two mechanisms for specifying XML schema
Document Type Definition (DTD)
» Widely used
XML Schema
» Newer, increasing use

Database System Concepts - 6t Edition 23.15 ©Silberschatz, Korth and Sudarshan

Document Type Definition (DTD)

® The type of an XML document can be specified using a DTD
DTD constraints structure of XML data
What elements can occur
What attributes can/must an element have

What subelements can/must occur inside each element, and how
many times.

m DTD does not constrain data types
All values represented as strings in XML

® DTD syntax
<IELEMENT element (subelements-specification) >
<IATTLIST element (attributes) >

Database System Concepts - 6t" Edition 23.16 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

% Element Specification in DTD

m Subelements can be specified as
names of elements, or
#PCDATA (parsed character data), i.e., character strings
EMPTY (no subelements) or ANY (anything can be a subelement)
m Example
<! ELEMENT department (dept_name building, budget)>
<! ELEMENT dept_name (#PCDATA)>
<! ELEMENT budget (#PCDATA)>
m Subelement specification may have regular expressions
<IELEMENT university ((department | course | instructor | teaches)+)>
» Notation:
“I” - alternatives
“+” - 1 or more occurrences

ik

- 0 or more occurrences

Database System Concepts - 6t Edition 23.17 ©Silberschatz, Korth and Sudarshan

% University DTD

<IDOCTYPE university [
<IELEMENT university ((department|course|instructor|teaches)+)>
<IELEMENT department (dept name, building, budget)>
<IELEMENT course (course id, title, dept name, credits)>
<IELEMENT instructor (11D, name, dept name, salary)>
<IELEMENT teaches (lID, course id)>
<IELEMENT dept name(#PCDATA)>
<IELEMENT building(#PCDATA)>
<IELEMENT budget(#PCDATA)>
<IELEMENT course id (#PCDATA)>
<IELEMENT title (#PCDATA)>
<IELEMENT credits(#PCDATA)>
<IELEMENT IID(#PCDATA)>
<IELEMENT name(#PCDATA)>
<IELEMENT salary(#PCDATA)>

Database System Concepts - 6t Edition 23.18 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

ﬂ Attribute Specification in DTD

—

m Attribute specification : for each attribute
Name
Type of attribute
» CDATA
» ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs)
more on this later
Whether
» mandatory (#REQUIRED)
» has a default value (value),
» or neither (#IMPLIED)
m Examples
<IATTLIST course course_id CDATA #REQUIRED>, or

<IATTLIST course
course_id ID #REQUIRED
dept_name IDREF #REQUIRED
instructors IDREFS #IMPLIED >

Database System Concepts - 6t Edition 23.19 ©Silberschatz, Korth and Sudarshan

ﬂ IDs and IDREFs

s

® An element can have at most one attribute of type ID

The ID attribute value of each element in an XML document must be
distinct

Thus the ID attribute value is an object identifier

m An attribute of type IDREF must contain the ID value of an element in
the same document

® An attribute of type IDREFS contains a set of (0 or more) ID values.
Each ID value must contain the ID value of an element in the same
document

Database System Concepts - 6t" Edition 23.20 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

~ - University DTD with Attributes

®m University DTD with ID and IDREF attribute types.
<IDOCTYPE university-3
<IELEMENT university ((department|course|instructor)+)>
<IELEMENT department (building, budget)>
<IATTLIST department
dept_name ID #REQUIRED >
<IELEMENT course (title, credits)>
<IATTLIST course
course_id ID #REQUIRED
dept_name IDREF #REQUIRED
instructors IDREFS #IMPLIED >
<IELEMENT instructor (name, salary)>
<IATTLIST instructor
11D ID #REQUIRED
dept_name IDREF #REQUIRED >
- declarations for title, credits, building,
budget, name and salary - - -
1>

Database System Concepts - 6t Edition 23.21 ©Silberschatz, Korth and Sudarshan

g XML data with ID and IDREF attributes

<university-3>
<department dept name=“Comp. Sci.”>
<building> Taylor </building>
<budget> 100000 </budget>
</department>
<department dept name=“Biology”>
<building> Watson </building>
<budget> 90000 </budget>
</department>
<course course id=“CS-101" dept name=“Comp. Sci”
instructors=“10101 83821">
<title> Intro. to Computer Science </title>
<credits> 4 </credits>
</course>

<instructor 11ID="10101" dept name="Comp. Sci.”>
<name> Srinivasan </name>
<salary> 65000 </salary>

</instructor>

</university-3>

Database System Concepts - 6" Edition 23.22 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

E Limitations of DTDs

Ze

B No typing of text elements and attributes
All values are strings, no integers, reals, etc.
m Difficult to specify unordered sets of subelements

Order is usually irrelevant in databases (unlike in the document-
layout environment from which XML evolved)

(A | B)* allows specification of an unordered set, but
» Cannot ensure that each of A and B occurs only once
m |Ds and IDREFs are untyped

The instructors attribute of an course may contain a reference to
another course, which is meaningless

» instructors attribute should ideally be constrained to refer to
instructor elements

Database System Concepts - 6t Edition 23.23 ©Silberschatz, Korth and Sudarshan

ﬂ XML Schema

Ze

m XML Schema is a more sophisticated schema language which
addresses the drawbacks of DTDs. Supports

Typing of values
» E.g. integer, string, etc
» Also, constraints on min/max values
User-defined, comlex types
Many more features, including
» uniqueness and foreign key constraints, inheritance
m XML Schema is itself specified in XML syntax, unlike DTDs
More-standard representation, but verbose
m XML Scheme is integrated with namespaces
m BUT: XML Schema is significantly more complicated than DTDs.

Database System Concepts - 6t" Edition 23.24 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

10

XML Schema Version of Univ. DTD

<xs:schema xmins:xs=" ">
<xs:element name="university” type="universityType” />
<xs:element name="department”’>
<xs:complexType>
<xs:sequence>
<xs:element name="dept name” type="xs:string”/>
<xs:element name="building” type="xs:string"/>
<xs:element name="budget” type="xs:decimal’/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="instructor”>
<xs:complexType>
<xs:sequence>
<xs:element name="1ID” type="xs:string"/>
<xs:element name="name” type="xs:string"/>
<xs:element name="dept name” type="xs:string”/>
<xs:element name="salary” type="xs:decimal’/>
</xs:sequence>
</xs:complexType>
</xs:element>
... Contd.

Database System Concepts - 6t Edition 23.25 ©Silberschatz, Korth and Sudarshan

XML Schema Version of Univ. DTD (Cont.)

<xs:complexType name="UniversityType”>
<xs:sequence>
<xs:element ref="“department” minOccurs="0" maxOccurs=“unbounded”/>
<xs:element ref=“course” minOccurs=“0" maxOccurs=“unbounded’/>
<xs:element ref="instructor” minOccurs=“0" maxOccurs="unbounded”/>
<xs:element ref="teaches” minOccurs="0" maxOccurs="unbounded’/>
</xs:sequence>
</xs:complexType>
</xs:schema>

m Choice of “xs:” was ours -- any other namespace prefix could be

chosen
m Element “university” has type “university Type”, which is defined
separately
xs:complexType is used later to create the named complex type
“UniversityType”
Database System Concepts - 6t Edition 23.26 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

E More features of XML Schema

m Attributes specified by xs:attribute tag:
<xs:attribute name = “dept_name’/>

adding the attribute use = “required” means value must be
specified
m Key constraint: “department names form a key for department
elements under the root university element:
<xs:key name = “deptKey”’>
<xs:selector xpath = “/university/department’/>
<xs:field xpath = “dept_name”/>
<\xs:key>
m Foreign key constraint from course to department:
<xs:keyref name = “courseDeptFKey” refer="deptKey”>
<xs:selector xpath = “/university/course”/>
<xs:field xpath = “dept_name”’/>
<\xs:keyref>

Database System Concepts - 6t Edition 23.27 ©Silberschatz, Korth and Sudarshan

“%% Manipulating XML Data

« XQuery
— Based on sequences, not sets
— Describe path within document (XPath)

— Variables, wildcards, etc. within path that are
matched

» Parser-based access (E.g., JavaAPI to XML)

— Designed for string representation of document
— DOM: Tree traversal

— SAX: Streaming through document

© 2016 Christopher W. Clifton

12

DOM basics

Gives view of a tree of elements
— XMLDocument doc = parser.getDocument();

— NodelList nl =
doc.getElementByTagName(“department”);

— XMLElement name = nl.item(2);

Interfaces to get/manipulate various parts
of XML objects

— Document, Node, Element, Attr, Text

Fall 2016 Chris Clifton - CS34800

29

SAX basics

Ly

» Event-based / streaming interface

— Create handlers for parts of object

« startElement (String uri, String localNamme, String gName,
Attributes atts)

» endElement (String uri, String localName, String gName)
« characters(char[] ch, int start, int length)
» Several others for less common object types
* Attributes: getQName, getValue
— Handler called when object encountered processing
document

* Tends to be faster than DOM, but not as flexible

Fall 2016 Chris Clifton - CS34800

30

© 2016 Christopher W. Clifton

13

ﬂ Tree Model of XML Data

s

® Query and transformation languages are based on a tree model of XML
data

® An XML document is modeled as a tree, with nodes corresponding to
elements and attributes

Element nodes have child nodes, which can be attributes or
subelements

Text in an element is modeled as a text node child of the element

Children of a node are ordered according to their order in the XML
document

Element and attribute nodes (except for the root node) have a single
parent, which is an element node

The root node has a single child, which is the root element of the
document

Database System Concepts - 6t Edition 23.32 ©Silberschatz, Korth and Sudarshan

ﬂ XPath

s

m XPath is used to address (select) parts of documents using
path expressions

m A path expression is a sequence of steps separated by “/”
Think of file names in a directory hierarchy

m Result of path expression: set of values that along with their
containing elements/attributes match the specified path

m Eg. /university-3/instructor/name evaluated on the university-3
data we saw earlier returns

<name>Srinivasan</name>
<name>Brandt</name>

m Eg. /university-3/instructor/name/text()
returns the same names, but without the enclosing tags

Database System Concepts - 6t" Edition 23.33 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

14

XPath (Cont.)

The initial “/” denotes root of the document (above the top-level tag)

Path expressions are evaluated left to right

Each step operates on the set of instances produced by the previous
step

Selection predicates may follow any step in a path, in []
E.g. /university-3/course[credits >= 4]
» returns account elements with a balance value greater than 400

» luniversity-3/course[credits] returns account elements containing
a credits subelement

Attributes are accessed using ‘@”
E.g. /university-3/course[credits >= 4]/@course_id
» returns the course identifiers of courses with credits >= 4

IDREF attributes are not dereferenced automatically (more on this
later)

Database System Concepts - 6t Edition 23.34 ©Silberschatz, Korth and Sudarshan

Functions in XPath

m XPath provides several functions

The function count() at the end of a path counts the number of
elements in the set generated by the path

» E.g. /university-2/instructor[count(./teaches/course)> 2]

Returns instructors teaching more than 2 courses (on
university-2 schema)

Also function for testing position (1, 2, ..) of node w.r.t. siblings

® Boolean connectives and and or and function not() can be used in
predicates

m |IDREFs can be referenced using functionid()

id() can also be applied to sets of references such as IDREFS and
even to strings containing multiple references separated by blanks

E.g. /university-3/course/id(@dept_name)

» returns all department elements referred to from the
dept_name attribute of course elements.

Database System Concepts - 6t" Edition 23.35 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

15

ﬂ More XPath Features

m Operator “|” used to implement union
E.qg. /university-3/course[@dept name=“Comp. Sci”] |
/university-3/course[@dept name="Biology”’]
» Gives union of Comp. Sci. and Biology courses
» However, “|” cannot be nested inside other operators.
m “//” can be used to skip multiple levels of nodes
E.g. /university-3//name

» finds any name element anywhere under the /university-3
element, regardless of the element in which it is contained.
m Astep in the path can go to parents, siblings, ancestors and
descendants of the nodes generated by the previous step, not just
to the children
“II”, described above, is a short from for specifying “all
descendants”

..” specifies the parent.
m doc(name) returns the root of a named document

Database System Concepts - 6t Edition 23.36 ©Silberschatz, Korth and Sudarshan

ﬂ XQuery

XQuery is a general purpose query language for XML data

® Currently being standardized by the World Wide Web Consortium
(W3C)

The textbook description is based on a January 2005 draft of the
standard. The final version may differ, but major features likely to
stay unchanged.

m XQuery is derived from the Quilt query language, which itself borrows
from SQL, XQL and XML-QL

m XQuery uses a
for ... let... where ... order by ...result ...
syntax
for <& SQLfrom
where & SQL where
order by < SQL order by

result < SQL select
let allows temporary variables, and has no equivalent in SQL

Database System Concepts - 6t" Edition 23.37 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

~ - FLWOR Syntax in XQuery

B For clause uses XPath expressions, and variable in for clause ranges over
values in the set returned by XPath

m Simple FLWOR expression in XQuery

find all courses with credits > 3, with each result enclosed in an
<course_id> .. </course_id>tag

for $x in /university-3/course

let $courseld := $x/@course_id

where $x/credits > 3

return <course_id>{ $courseld } </course id>

Items in the return clause are XML text unless enclosed in {}, in which
case they are evaluated

m Let clause not really needed in this query, and selection can be done In
XPath. Query can be written as:

for $x in /university-3/course[credits > 3]
return <course_id> { $x/@course_id } </course_id>

m Alternative notation for constructing elements:
return element course_id { element $x/@course_id }

Database System Concepts - 6t Edition 23.38 ©Silberschatz, Korth and Sudarshan

Joins

m Joins are specified in a manner very similarto SQL

for $c in /university/course,

$i in /university/instructor,

$t in /university/teaches
where $c/course_id=$t/course id and $t/11D = $i/lID
return <course_instructor>{ $c $i } </course_instructor>

m The same query can be expressed with the selections specified as
XPath selections:

for $c in /university/course,
$i in /university/instructor,
$t in /university/teaches[$c/course_id=$t/course_id
and $t/1ID = $i/lID]
return <course_instructor>{ $c $i } </course_instructor>

Database System Concepts - 6" Edition 23.39 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

17

g Nested Queries

m The following query converts data from the flat structure for university
information into the nested structure used in university-1

<university-1>
{ for $d in /university/department
return <department>
{$d/*}
{for $c in /university/course[dept name = $d/dept name]
return $c}
</department>

{ for $i in /university/instructor
return <instructor>
{$i/*}
{ for $c in /university/teaches[lID = $i/lID]
return $c/course id }
</instructor>

}

</university-1>

m $c/* denotes all the children of the node to which $c is bound, without the
enclosing top-level tag

Database System Concepts - 6t Edition 23.40 ©Silberschatz, Korth and Sudarshan

g Grouping and Aggregation

m Nested queries are used for grouping

for $d in /university/department
return
<department-total-salary>
<dept_name>{ $d/dept name } </dept_name>
<total_salary>{ fn:sum(
for $i in /university/instructor[dept_name = $d/dept_name]
return $i/salary
)}
</total_salary>
</department-total-salary>

Database System Concepts - 6t" Edition 23.41 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

18

Sorting in XQuery

® The order by clause can be used at the end of any expression. E.g. to return
instructors sorted by name
for $i in /university/instructor
order by $i/name
return <instructor> { $i/* } </instructor>

®m Use order by $i/name descending to sort in descending order

m Can sort at multiple levels of nesting (sort departments by dept_name, and by
courses sorted to course_id within each department)

<university-1> {
for $d in /university/department
order by $d/dept name
return
<department>
{$d/*}
{ for $c in /university/course[dept name = $d/dept name]
order by $c/course id
return <course> { $c/* } </course>}
</department>
} </university-1>

Database System Concepts - 6t Edition 23.42 ©Silberschatz, Korth and Sudarshan

g Functions and Other XQuery Features

m User defined functions with the type system of XMLSchema
declare function local:dept_courses($iid as xs:string)
as element(course)*

for $i in /university/instructor[lID = $iid],
$c in /university/courses[dept_name = $i/dept name]
return $c

}

Types are optional for function parameters and return values
The * (as in decimal*) indicates a sequence of values of that type
Universal and existential quantification in where clause predicates
some $e in path satisfies P
every $e in path satisfies P

Add and fn:exists($e) to prevent empty $e from satisfying every
clause

XQuery also supports If-then-else clauses

Database System Concepts - 6" Edition 23.43 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

19

ﬂ XSLT

B A stylesheet stores formatting options for a document, usually
separately from document

E.g. an HTML style sheet may specify font colors and sizes for
headings, etc.

m The XML Stylesheet Language (XSL) was originally designed for
generating HTML from XML

m XSLT is a general-purpose transformation language
Can translate XML to XML, and XML to HTML
m XSLT transformations are expressed using rules calledtemplates

Templates combine selection using XPath with construction of
results

Database System Concepts - 6t Edition 23.44 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

20

