
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

XML

Prof. Chris Clifton

12 October 2016

Introduction to XML

• XML: Extensible Markup Language
– Developed by WWW Consortium as more flexible

version of HTML

– Derived (as with HTML) from SGML (Standard
Generalized Markup Language)

• Goal: Add structure to document
– Describe content, not presentation

• Key idea: tags
– <title>Introduction to XML</title>

– <list><item>XML: Exten… </item>
<item>…</list>

Fall 2016 Chris Clifton - CS34800 2

©Jan-16 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan23.4Database System Concepts - 6th Edition

XML: Motivation

 Data interchange is critical in today’s networked world

 Examples:

 Banking: funds transfer

 Order processing (especially inter-company orders)

 Scientific data

– Chemistry: ChemML, …

– Genetics: BSML (Bio-Sequence Markup Language), …

 Paper flow of information between organizations is being replaced

by electronic flow of information

 Each application area has its own set of standards for representing

information

 XML has become the basis for all new generation data interchange

formats

©Silberschatz, Korth and Sudarshan23.7Database System Concepts - 6th Edition

Structure of XML Data

 Tag: label for a section of data

 Element: section of data beginning with <tagname> and ending with

matching </tagname>

 Elements must be properly nested

 Proper nesting

 <course> … <title> …. </title> </course>

 Improper nesting

 <course> … <title> …. </course> </title>

 Formally: every start tag must have a unique matching end tag,

that is in the context of the same parent element.

 Every document must have a single top-level element

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan23.8Database System Concepts - 6th Edition

Example of Nested Elements

<purchase_order>

<identifier> P-101 </identifier>

<purchaser> …. </purchaser>

<itemlist>

<item>

<identifier> RS1 </identifier>

<description> Atom powered rocket sled </description>

<quantity> 2 </quantity>

<price> 199.95 </price>

</item>

<item>

<identifier> SG2 </identifier>

<description> Superb glue </description>

<quantity> 1 </quantity>

<unit-of-measure> liter </unit-of-measure>

<price> 29.95 </price>

</item>

</itemlist>

</purchase_order>

©Silberschatz, Korth and Sudarshan23.9Database System Concepts - 6th Edition

Motivation for Nesting

 Nesting of data is useful in data transfer

 Example: elements representing item nested within an itemlist

element

 Nesting is not supported, or discouraged, in relational databases

 With multiple orders, customer name and address are stored

redundantly

 normalization replaces nested structures in each order by foreign key

into table storing customer name and address information

 Nesting is supported in object-relational databases

 But nesting is appropriate when transferring data

 External application does not have direct access to data referenced

by a foreign key

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan23.10Database System Concepts - 6th Edition

Structure of XML Data (Cont.)

 Mixture of text with sub-elements is legal in XML.

 Example:

<course>
This course is being offered for the first time in 2009.
<course id> BIO-399 </course id>
<title> Computational Biology </title>
<dept name> Biology </dept name>
<credits> 3 </credits>

</course>

 Useful for document markup, but discouraged for data
representation

©Silberschatz, Korth and Sudarshan23.11Database System Concepts - 6th Edition

Attributes

 Elements can have attributes

<course course_id= “CS-101”>

<title> Intro. to Computer Science</title>

<dept name> Comp. Sci. </dept name>

<credits> 4 </credits>

</course>

 Attributes are specified by name=value pairs inside the starting tag of an

element

 An element may have several attributes, but each attribute name can

only occur once

<course course_id = “CS-101” credits=“4”>

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan23.12Database System Concepts - 6th Edition

Attributes vs. Subelements

 Distinction between subelement and attribute

 In the context of documents, attributes are part of markup, while

subelement contents are part of the basic document contents

 In the context of data representation, the difference is unclear and

may be confusing

 Same information can be represented in two ways

– <course course_id= “CS-101”> … </course>

– <course>

<course_id>CS-101</course_id> …

</course>

 Suggestion: use attributes for identifiers of elements, and use

subelements for contents

©Silberschatz, Korth and Sudarshan23.13Database System Concepts - 6th Edition

Namespaces

 XML data has to be exchanged between organizations

 Same tag name may have different meaning in different organizations,

causing confusion on exchanged documents

 Specifying a unique string as an element name avoids confusion

 Better solution: use unique-name:element-name

 Avoid using long unique names all over document by using XML

Namespaces

<university xmlns:yale=“http://www.yale.edu”>

…
<yale:course>

<yale:course_id> CS-101 </yale:course_id>
<yale:title> Intro. to Computer Science</yale:title>
<yale:dept_name> Comp. Sci. </yale:dept_name>
<yale:credits> 4 </yale:credits>

</yale:course>
…

</university>

http://www.yale.edu/

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan23.15Database System Concepts - 6th Edition

XML Document Schema

 Database schemas constrain what information can be stored, and the

data types of stored values

 XML documents are not required to have an associated schema

 However, schemas are very important for XML data exchange

 Otherwise, a site cannot automatically interpret data received from

another site

 Two mechanisms for specifying XML schema

 Document Type Definition (DTD)

 Widely used

 XML Schema

 Newer, increasing use

©Silberschatz, Korth and Sudarshan23.16Database System Concepts - 6th Edition

Document Type Definition (DTD)

 The type of an XML document can be specified using a DTD

 DTD constraints structure of XML data

 What elements can occur

 What attributes can/must an element have

 What subelements can/must occur inside each element, and how

many times.

 DTD does not constrain data types

 All values represented as strings in XML

 DTD syntax

 <!ELEMENT element (subelements-specification) >

 <!ATTLIST element (attributes) >

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan23.17Database System Concepts - 6th Edition

Element Specification in DTD

 Subelements can be specified as

 names of elements, or

 #PCDATA (parsed character data), i.e., character strings

 EMPTY (no subelements) or ANY (anything can be a subelement)

 Example

<! ELEMENT department (dept_name building, budget)>

<! ELEMENT dept_name (#PCDATA)>

<! ELEMENT budget (#PCDATA)>

 Subelement specification may have regular expressions

<!ELEMENT university ((department | course | instructor | teaches)+)>

 Notation:

– “|” - alternatives

– “+” - 1 or more occurrences

– “*” - 0 or more occurrences

©Silberschatz, Korth and Sudarshan23.18Database System Concepts - 6th Edition

University DTD

<!DOCTYPE university [

<!ELEMENT university ((department|course|instructor|teaches)+)>

<!ELEMENT department (dept name, building, budget)>

<!ELEMENT course (course id, title, dept name, credits)>

<!ELEMENT instructor (IID, name, dept name, salary)>

<!ELEMENT teaches (IID, course id)>

<!ELEMENT dept name(#PCDATA)>

<!ELEMENT building(#PCDATA)>

<!ELEMENT budget(#PCDATA)>

<!ELEMENT course id (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT credits(#PCDATA)>

<!ELEMENT IID(#PCDATA)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT salary(#PCDATA)>

]>

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan23.19Database System Concepts - 6th Edition

Attribute Specification in DTD

 Attribute specification : for each attribute

 Name

 Type of attribute

 CDATA

 ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs)

– more on this later

 Whether

 mandatory (#REQUIRED)

 has a default value (value),

 or neither (#IMPLIED)

 Examples

 <!ATTLIST course course_id CDATA #REQUIRED>, or

 <!ATTLIST course

course_id ID #REQUIRED

dept_name IDREF #REQUIRED

instructors IDREFS #IMPLIED >

©Silberschatz, Korth and Sudarshan23.20Database System Concepts - 6th Edition

IDs and IDREFs

 An element can have at most one attribute of type ID

 The ID attribute value of each element in an XML document must be

distinct

 Thus the ID attribute value is an object identifier

 An attribute of type IDREF must contain the ID value of an element in

the same document

 An attribute of type IDREFS contains a set of (0 or more) ID values.

Each ID value must contain the ID value of an element in the same

document

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan23.21Database System Concepts - 6th Edition

University DTD with Attributes

 University DTD with ID and IDREF attribute types.

<!DOCTYPE university-3 [

<!ELEMENT university ((department|course|instructor)+)>

<!ELEMENT department (building, budget)>

<!ATTLIST department

dept_name ID #REQUIRED >

<!ELEMENT course (title, credits)>

<!ATTLIST course

course_id ID #REQUIRED

dept_name IDREF #REQUIRED

instructors IDREFS #IMPLIED >

<!ELEMENT instructor (name, salary)>

<!ATTLIST instructor

IID ID #REQUIRED

dept_name IDREF #REQUIRED >

· · · declarations for title, credits, building,

budget, name and salary · · ·

]>

©Silberschatz, Korth and Sudarshan23.22Database System Concepts - 6th Edition

XML data with ID and IDREF attributes

<university-3>

<department dept name=“Comp. Sci.”>

<building> Taylor </building>

<budget> 100000 </budget>

</department>

<department dept name=“Biology”>

<building> Watson </building>

<budget> 90000 </budget>

</department>

<course course id=“CS-101” dept name=“Comp. Sci”

instructors=“10101 83821”>

<title> Intro. to Computer Science </title>

<credits> 4 </credits>

</course>

….

<instructor IID=“10101” dept name=“Comp. Sci.”>

<name> Srinivasan </name>

<salary> 65000 </salary>

</instructor>

….

</university-3>

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan23.23Database System Concepts - 6th Edition

Limitations of DTDs

 No typing of text elements and attributes

 All values are strings, no integers, reals, etc.

 Difficult to specify unordered sets of subelements

 Order is usually irrelevant in databases (unlike in the document-

layout environment from which XML evolved)

 (A | B)* allows specification of an unordered set, but

 Cannot ensure that each of A and B occurs only once

 IDs and IDREFs are untyped

 The instructors attribute of an course may contain a reference to

another course, which is meaningless

 instructors attribute should ideally be constrained to refer to

instructor elements

©Silberschatz, Korth and Sudarshan23.24Database System Concepts - 6th Edition

XML Schema

 XML Schema is a more sophisticated schema language which

addresses the drawbacks of DTDs. Supports

 Typing of values

 E.g. integer, string, etc

 Also, constraints on min/max values

 User-defined, comlex types

 Many more features, including

 uniqueness and foreign key constraints, inheritance

 XML Schema is itself specified in XML syntax, unlike DTDs

 More-standard representation, but verbose

 XML Scheme is integrated with namespaces

 BUT: XML Schema is significantly more complicated than DTDs.

©Jan-16 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan23.25Database System Concepts - 6th Edition

XML Schema Version of Univ. DTD

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

<xs:element name=“university” type=“universityType” />

<xs:element name=“department”>

<xs:complexType>

<xs:sequence>

<xs:element name=“dept name” type=“xs:string”/>

<xs:element name=“building” type=“xs:string”/>

<xs:element name=“budget” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

….

<xs:element name=“instructor”>

<xs:complexType>

<xs:sequence>

<xs:element name=“IID” type=“xs:string”/>

<xs:element name=“name” type=“xs:string”/>

<xs:element name=“dept name” type=“xs:string”/>

<xs:element name=“salary” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

… Contd.

©Silberschatz, Korth and Sudarshan23.26Database System Concepts - 6th Edition

XML Schema Version of Univ. DTD (Cont.)

….

<xs:complexType name=“UniversityType”>

<xs:sequence>

<xs:element ref=“department” minOccurs=“0” maxOccurs=“unbounded”/>

<xs:element ref=“course” minOccurs=“0” maxOccurs=“unbounded”/>

<xs:element ref=“instructor” minOccurs=“0” maxOccurs=“unbounded”/>

<xs:element ref=“teaches” minOccurs=“0” maxOccurs=“unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:schema>

 Choice of “xs:” was ours -- any other namespace prefix could be

chosen

 Element “university” has type “universityType”, which is defined

separately

 xs:complexType is used later to create the named complex type

“UniversityType”

©Jan-16 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan23.27Database System Concepts - 6th Edition

More features of XML Schema

 Attributes specified by xs:attribute tag:

 <xs:attribute name = “dept_name”/>

 adding the attribute use = “required” means value must be

specified

 Key constraint: “department names form a key for department

elements under the root university element:

<xs:key name = “deptKey”>

<xs:selector xpath = “/university/department”/>

<xs:field xpath = “dept_name”/>

<\xs:key>

 Foreign key constraint from course to department:

<xs:keyref name = “courseDeptFKey” refer=“deptKey”>

<xs:selector xpath = “/university/course”/>

<xs:field xpath = “dept_name”/>

<\xs:keyref>

Manipulating XML Data

• XQuery

– Based on sequences, not sets

– Describe path within document (XPath)

– Variables, wildcards, etc. within path that are

matched

• Parser-based access (E.g., Java API to XML)

– Designed for string representation of document

– DOM: Tree traversal

– SAX: Streaming through document

©Jan-16 Christopher W. Clifton 1320

DOM basics

• Gives view of a tree of elements

– XMLDocument doc = parser.getDocument();

– NodeList nl =

doc.getElementByTagName(“department”);

– XMLElement name = nl.item(1);

• Interfaces to get/manipulate various parts

of XML objects

– Document, Node, Element, Attr, Text

Fall 2016 Chris Clifton - CS34800 29

SAX basics

• Event-based / streaming interface

– Create handlers for parts of object
• startElement (String uri, String localNamme, String qName,

Attributes atts)

• endElement (String uri, String localName, String qName)

• characters(char[] ch, int start, int length)

• Several others for less common object types

• Attributes: getQName, getValue

– Handler called when object encountered processing
document

• Tends to be faster than DOM, but not as flexible

Fall 2016 Chris Clifton - CS34800 30

©Jan-16 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan23.32Database System Concepts - 6th Edition

Tree Model of XML Data

 Query and transformation languages are based on a tree model of XML

data

 An XML document is modeled as a tree, with nodes corresponding to

elements and attributes

 Element nodes have child nodes, which can be attributes or

subelements

 Text in an element is modeled as a text node child of the element

 Children of a node are ordered according to their order in the XML

document

 Element and attribute nodes (except for the root node) have a single

parent, which is an element node

 The root node has a single child, which is the root element of the

document

©Silberschatz, Korth and Sudarshan23.33Database System Concepts - 6th Edition

XPath

 XPath is used to address (select) parts of documents using

path expressions

 A path expression is a sequence of steps separated by “/”

 Think of file names in a directory hierarchy

 Result of path expression: set of values that along with their

containing elements/attributes match the specified path

 E.g. /university-3/instructor/name evaluated on the university-3

data we saw earlier returns

<name>Srinivasan</name>

<name>Brandt</name>

 E.g. /university-3/instructor/name/text()

returns the same names, but without the enclosing tags

©Jan-16 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan23.34Database System Concepts - 6th Edition

XPath (Cont.)

 The initial “/” denotes root of the document (above the top-level tag)

 Path expressions are evaluated left to right

 Each step operates on the set of instances produced by the previous

step

 Selection predicates may follow any step in a path, in []

 E.g. /university-3/course[credits >= 4]

 returns account elements with a balance value greater than 400

 /university-3/course[credits] returns account elements containing

a credits subelement

 Attributes are accessed using “@”

 E.g. /university-3/course[credits >= 4]/@course_id

 returns the course identifiers of courses with credits >= 4

 IDREF attributes are not dereferenced automatically (more on this

later)

©Silberschatz, Korth and Sudarshan23.35Database System Concepts - 6th Edition

Functions in XPath

 XPath provides several functions

 The function count() at the end of a path counts the number of
elements in the set generated by the path

 E.g. /university-2/instructor[count(./teaches/course)> 2]

– Returns instructors teaching more than 2 courses (on
university-2 schema)

 Also function for testing position (1, 2, ..) of node w.r.t. siblings

 Boolean connectives and and or and function not() can be used in
predicates

 IDREFs can be referenced using function id()

 id() can also be applied to sets of references such as IDREFS and
even to strings containing multiple references separated by blanks

 E.g. /university-3/course/id(@dept_name)

 returns all department elements referred to from the
dept_name attribute of course elements.

©Jan-16 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan23.36Database System Concepts - 6th Edition

More XPath Features

 Operator “|” used to implement union

 E.g. /university-3/course[@dept name=“Comp. Sci”] |

/university-3/course[@dept name=“Biology”]

 Gives union of Comp. Sci. and Biology courses

 However, “|” cannot be nested inside other operators.

 “//” can be used to skip multiple levels of nodes

 E.g. /university-3//name

 finds any name element anywhere under the /university-3
element, regardless of the element in which it is contained.

 A step in the path can go to parents, siblings, ancestors and
descendants of the nodes generated by the previous step, not just
to the children

 “//”, described above, is a short from for specifying “all
descendants”

 “..” specifies the parent.

 doc(name) returns the root of a named document

©Silberschatz, Korth and Sudarshan23.37Database System Concepts - 6th Edition

XQuery

 XQuery is a general purpose query language for XML data

 Currently being standardized by the World Wide Web Consortium
(W3C)

 The textbook description is based on a January 2005 draft of the
standard. The final version may differ, but major features likely to
stay unchanged.

 XQuery is derived from the Quilt query language, which itself borrows
from SQL, XQL and XML-QL

 XQuery uses a
for … let … where … order by …result …

syntax
for SQL from
where SQL where
order by SQL order by

result SQL select
let allows temporary variables, and has no equivalent in SQL

©Jan-16 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan23.38Database System Concepts - 6th Edition

FLWOR Syntax in XQuery

 For clause uses XPath expressions, and variable in for clause ranges over
values in the set returned by XPath

 Simple FLWOR expression in XQuery

 find all courses with credits > 3, with each result enclosed in an

<course_id> .. </course_id> tag

for $x in /university-3/course

let $courseId := $x/@course_id

where $x/credits > 3

return <course_id> { $courseId } </course id>

 Items in the return clause are XML text unless enclosed in {}, in which
case they are evaluated

 Let clause not really needed in this query, and selection can be done In
XPath. Query can be written as:

for $x in /university-3/course[credits > 3]
return <course_id> { $x/@course_id } </course_id>

 Alternative notation for constructing elements:

return element course_id { element $x/@course_id }

©Silberschatz, Korth and Sudarshan23.39Database System Concepts - 6th Edition

Joins

 Joins are specified in a manner very similar to SQL

for $c in /university/course,

$i in /university/instructor,

$t in /university/teaches

where $c/course_id= $t/course id and $t/IID = $i/IID

return <course_instructor> { $c $i } </course_instructor>

 The same query can be expressed with the selections specified as

XPath selections:

for $c in /university/course,

$i in /university/instructor,

$t in /university/teaches[$c/course_id= $t/course_id

and $t/IID = $i/IID]

return <course_instructor> { $c $i } </course_instructor>

©Jan-16 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan23.40Database System Concepts - 6th Edition

Nested Queries

 The following query converts data from the flat structure for university
information into the nested structure used in university-1

<university-1>

{ for $d in /university/department

return <department>

{ $d/* }

{ for $c in /university/course[dept name = $d/dept name]

return $c }

</department>

}

{ for $i in /university/instructor

return <instructor>

{ $i/* }

{ for $c in /university/teaches[IID = $i/IID]

return $c/course id }

</instructor>

}

</university-1>

 $c/* denotes all the children of the node to which $c is bound, without the

enclosing top-level tag

©Silberschatz, Korth and Sudarshan23.41Database System Concepts - 6th Edition

Grouping and Aggregation

 Nested queries are used for grouping

for $d in /university/department

return

<department-total-salary>

<dept_name> { $d/dept name } </dept_name>

<total_salary> { fn:sum(

for $i in /university/instructor[dept_name = $d/dept_name]

return $i/salary

) }

</total_salary>

</department-total-salary>

©Jan-16 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan23.42Database System Concepts - 6th Edition

Sorting in XQuery

 The order by clause can be used at the end of any expression. E.g. to return
instructors sorted by name

for $i in /university/instructor
order by $i/name
return <instructor> { $i/* } </instructor>

 Use order by $i/name descending to sort in descending order

 Can sort at multiple levels of nesting (sort departments by dept_name, and by
courses sorted to course_id within each department)

<university-1> {
for $d in /university/department
order by $d/dept name
return

<department>
{ $d/* }
{ for $c in /university/course[dept name = $d/dept name]
order by $c/course id
return <course> { $c/* } </course> }

</department>
} </university-1>

©Silberschatz, Korth and Sudarshan23.43Database System Concepts - 6th Edition

Functions and Other XQuery Features

 User defined functions with the type system of XMLSchema
declare function local:dept_courses($iid as xs:string)

as element(course)*
{

for $i in /university/instructor[IID = $iid],
$c in /university/courses[dept_name = $i/dept name]

return $c
}

 Types are optional for function parameters and return values

 The * (as in decimal*) indicates a sequence of values of that type

 Universal and existential quantification in where clause predicates

 some $e in path satisfies P

 every $e in path satisfies P

 Add and fn:exists($e) to prevent empty $e from satisfying every
clause

 XQuery also supports If-then-else clauses

©Jan-16 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan23.44Database System Concepts - 6th Edition

XSLT

 A stylesheet stores formatting options for a document, usually

separately from document

 E.g. an HTML style sheet may specify font colors and sizes for

headings, etc.

 The XML Stylesheet Language (XSL) was originally designed for

generating HTML from XML

 XSLT is a general-purpose transformation language

 Can translate XML to XML, and XML to HTML

 XSLT transformations are expressed using rules called templates

 Templates combine selection using XPath with construction of

results

