
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Relational Algebra

Prof. Chris Clifton

12 September 2016

1

©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 6th Edition

Set Comparison – “all” Clause

 Find the names of all instructors whose salary is greater than the

salary of all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

from instructor

where dept name = ’Biology’);

©Jan-16 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan3.3Database System Concepts - 6th Edition

Definition of “all” Clause

 F <comp> all r t r (F <comp> t)

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6(5 all) = true (since 5 4 and 5 6)

(5 < all

) = false(5 = all

(all) not in

However, (= all) in

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 6th Edition

Test for Empty Relations

 The exists construct returns the value true if the argument

subquery is nonempty.

 exists r r Ø

 not exists r r = Ø

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 6th Edition

Use of “exists” Clause

 Yet another way of specifying the query “Find all courses taught in

both the Fall 2009 semester and in the Spring 2010 semester”

select course_id

from section as S

where semester = ’Fall’ and year = 2009 and

exists (select *

from section as T

where semester = ’Spring’ and year= 2010

and S.course_id = T.course_id);

 Correlation name – variable S in the outer query

 Correlated subquery – the inner query

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 6th Edition

Use of “not exists” Clause

 Find all students who have taken all courses offered in the Biology

department.

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where dept_name = ’Biology’)

except

(select T.course_id

from takes as T

where S.ID = T.ID));

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

 Note that X – Y = Ø X Y

 Note: Cannot write this query using = all and its variants

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 6th Edition

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any

duplicate tuples in its result.

 The unique construct evaluates to “true” if a given subquery

contains no duplicates .

 Find all courses that were offered at most once in 2009

select T.course_id

from course as T

where unique (select R.course_id

from section as R

where T.course_id= R.course_id

and R.year = 2009);

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 6th Edition

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name)

where avg_salary > 42000;

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)

from instructor

group by dept_name) as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 6th Edition

With Clause

 The with clause provides a way of defining a temporary relation

whose definition is available only to the query in which the with

clause occurs.

 Find all departments with the maximum budget

with max_budget (value) as

(select max(budget)

from department)

select department.name

from department, max_budget

where department.budget = max_budget.value;

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 6th Edition

Complex Queries using With Clause

 Find all departments where the total salary is greater than the

average of the total salary at all departments

with dept _total (dept_name, value) as

(select dept_name, sum(salary)

from instructor

group by dept_name),

dept_total_avg(value) as

(select avg(value)

from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value > dept_total_avg.value;

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 6th Edition

Scalar Subquery

 Scalar subquery is one which is used where a single value is

expected

 List all departments along with the number of instructors in each

department

select dept_name,

(select count(*)

from instructor

where department.dept_name = instructor.dept_name)

as num_instructors

from department;

 Runtime error if subquery returns more than one result tuple

Outerjoin

The normal join can “lose” information,
because a tuple that doesn’t join with any
from the other relation (dangles) has no
vestage in the join result.

• The null value can be used to “pad”
dangling tuples so they appear in the join.

• Gives us the outerjoin operator o .

• Variations: theta-outerjoin, left- and right-
outerjoin (pad only dangling tuples from
the left (respectively, right).

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 6th Edition

Join operations – Example

 Relation course

 Relation prereq

 Observe that

prereq information is missing for CS-315 and

course information is missing for CS-437

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 6th Edition

Left Outer Join

 course natural left outer join prereq

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan4.17Database System Concepts - 6th Edition

Right Outer Join

 course natural right outer join prereq

©Silberschatz, Korth and Sudarshan4.18Database System Concepts - 6th Edition

Joined Relations

 Join operations take two relations and return as a result

another relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations

match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not

match any tuple in the other relation (based on the join

condition) are treated.

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan4.19Database System Concepts - 6th Edition

Full Outer Join

 course natural full outer join prereq

Is outerjoin operation (o) fundamental?

A. Yes, it is a fundamental relational operation

B. No, it can be written using other relational
operations

“Constructing” outerjoin

• Cross-product
– Select (σ) on join attributes being equal

– Add in (U) the “missing” items

• Can choose either left or right outerjoin

• Same in SQL
– select *

from left, right
where left.id = right.id or left.id
UNION
select * from left where left.id not in (select id from right)
UNION
select * from left where right.id not in (select id from left)

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 6th Edition

Join operations – Example

 Relation course

 Relation prereq

 Observe that

prereq information is missing for CS-315 and

course information is missing for CS-437

©Silberschatz, Korth and Sudarshan4.22Database System Concepts - 6th Edition

Joined Relations – Examples

 course inner join prereq on

course.course_id = prereq.course_id

 What is the difference between the above, and a natural join?

 course left outer join prereq on

course.course_id = prereq.course_id

©Jan-16 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan4.23Database System Concepts - 6th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

Extended (“Nonclassical”)

Relational Algebra

Adds features needed for SQL, bags.

1. Duplicate-elimination operator .

2. Extended projection.

3. Sorting operator .

4. Grouping-and-aggregation operator .

5. Outerjoin operator o .

©Jan-16 Christopher W. Clifton 1220

CS34800

Information Systems

Procedures

Prof. Chris Clifton

14 September 2016

27

©Silberschatz, Korth and Sudarshan5.28Database System Concepts - 6th Edition

Accessing SQL From a Programming Language

 API (application-program interface) for a program to interact with a

database server

 Application makes calls to

 Connect with the database server

 Send SQL commands to the database server

 Fetch tuples of result one-by-one into program variables

 Various tools:

 JDBC (Java Database Connectivity) works with Java

 ODBC (Open Database Connectivity) works with C, C++, C#,

and Visual Basic. Other API’s such as ADO.NET sit on top of

ODBC

 Embedded SQL

©Jan-16 Christopher W. Clifton 1320

Key concept:

Cursor

• Query returns a table

– Could be viewed as a “Set” data type

– Not all programming languages deal with this

• Instead, idea of a cursor to iterate over table

– Access one row of result at a time

– Typically used in a loop construct in the language

• Query processor “understands” cursor

– Can start making results available before query

completes

©Silberschatz, Korth and Sudarshan5.30Database System Concepts - 6th Edition

JDBC

 JDBC is a Java API for communicating with database systems

supporting SQL.

 JDBC supports a variety of features for querying and updating data,

and for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of

relation attributes.

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

©Jan-16 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan5.31Database System Concepts - 6th Edition

ODBC

 Open DataBase Connectivity (ODBC) standard

 standard for application program to communicate with a

database server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan5.32Database System Concepts - 6th Edition

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of

programming languages such as C, C++, Java, Fortran, and PL/1,

 A language to which SQL queries are embedded is referred to as a

host language, and the SQL structures permitted in the host

language comprise embedded SQL.

 The basic form of these languages follows that of the System R

embedding of SQL into PL/1.

 EXEC SQL statement is used to identify embedded SQL request to

the preprocessor

EXEC SQL <embedded SQL statement >;

Note: this varies by language:

 In some languages, like COBOL, the semicolon is replaced with

END-EXEC

 In Java embedding uses # SQL { …. };

©Jan-16 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan5.33Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 Before executing any SQL statements, the program must first connect

to the database. This is done using:

EXEC-SQL connect to server user user-name using password;

Here, server identifies the server to which a connection is to be

established.

 Variables of the host language can be used within embedded SQL

statements. They are preceded by a colon (:) to distinguish from

SQL variables (e.g., :credit_amount)

 Variables used as above must be declared within DECLARE section,

as illustrated below. The syntax for declaring the variables, however,

follows the usual host language syntax.

EXEC-SQL BEGIN DECLARE SECTION}

int credit-amount ;

EXEC-SQL END DECLARE SECTION;

©Silberschatz, Korth and Sudarshan5.34Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 To write an embedded SQL query, we use the

declare c cursor for <SQL query>

statement. The variable c is used to identify the query

 Example:

 From within a host language, find the ID and name of

students who have completed more than the number of

credits stored in variable credit_amount in the host langue

 Specify the query in SQL as follows:

EXEC SQL

declare c cursor for

select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

©Jan-16 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan5.35Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 Example:

 From within a host language, find the ID and name of

students who have completed more than the number of

credits stored in variable credit_amount in the host langue

 Specify the query in SQL as follows:

EXEC SQL

declare c cursor for

select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

 The variable c (used in the cursor declaration) is used to

identify the query

©Silberschatz, Korth and Sudarshan5.36Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 The open statement for our example is as follows:

EXEC SQL open c ;

This statement causes the database system to execute the query

and to save the results within a temporary relation. The query uses

the value of the host-language variable credit-amount at the time the

open statement is executed.

 The fetch statement causes the values of one tuple in the query

result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

©Jan-16 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan5.37Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the

temporary relation that holds the result of the query.

EXEC SQL close c ;

Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan5.38Database System Concepts - 6th Edition

Updates Through Embedded SQL

 Embedded SQL expressions for database modification (update, insert,

and delete)

 Can update tuples fetched by cursor by declaring that the cursor is for

update

EXEC SQL

declare c cursor for

select *

from instructor

where dept_name = ‘Music’

for update

 We then iterate through the tuples by performing fetch operations on

the cursor (as illustrated earlier), and after fetching each tuple we

execute the following code:

update instructor

set salary = salary + 1000

where current of c

©Jan-16 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan5.39Database System Concepts - 6th Edition

Functions and Procedures

 SQL:1999 supports functions and procedures

 Functions/procedures can be written in SQL itself, or in an external

programming language (e.g., C, Java).

 Functions written in an external languages are particularly useful

with specialized data types such as images and geometric objects.

 Example: functions to check if polygons overlap, or to compare

images for similarity.

 Some database systems support table-valued functions, which

can return a relation as a result.

 SQL:1999 also supports a rich set of imperative constructs, including

 Loops, if-then-else, assignment

 Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999.

©Silberschatz, Korth and Sudarshan5.40Database System Concepts - 6th Edition

SQL Functions

 Define a function that, given the name of a department, returns the

count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))

returns integer

begin

declare d_count integer;

select count (*) into d_count

from instructor

where instructor.dept_name = dept_name

return d_count;

end

 The function dept_count can be used to find the department names

and budget of all departments with more that 12 instructors.

select dept_name, budget

from department

where dept_count (dept_name) > 12

©Jan-16 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan5.41Database System Concepts - 6th Edition

SQL functions (Cont.)

 Compound statement: begin … end

 May contain multiple SQL statements between begin and
end.

 returns -- indicates the variable-type that is returned (e.g.,
integer)

 return -- specifies the values that are to be returned as
result of invoking the function

 SQL function are in fact parameterized views that generalize
the regular notion of views by allowing parameters.

©Silberschatz, Korth and Sudarshan5.42Database System Concepts - 6th Edition

Table Functions

 SQL:2003 added functions that return a relation as a result

 Example: Return all instructors in a given department

create function instructor_of (dept_name char(20))

returns table (

ID varchar(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

return table

(select ID, name, dept_name, salary

from instructor

where instructor.dept_name = instructor_of.dept_name)

 Usage

select *

from table (instructor_of (‘Music’))

©Jan-16 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan5.43Database System Concepts - 6th Edition

SQL Procedures

 The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),

out d_count integer)

begin

select count(*) into d_count

from instructor

where instructor.dept_name = dept_count_proc.dept_name

end

 Procedures can be invoked either from an SQL procedure or from

embedded SQL, using the call statement.

declare d_count integer;

call dept_count_proc(‘Physics’, d_count);

Procedures and functions can be invoked also from dynamic SQL

 SQL:1999 allows more than one function/procedure of the same name

(called name overloading), as long as the number of

arguments differ, or at least the types of the arguments differ

©Silberschatz, Korth and Sudarshan5.44Database System Concepts - 6th Edition

Language Constructs for Procedures & Functions

 SQL supports constructs that gives it almost all the power of a general-
purpose programming language.

 Warning: most database systems implement their own variant of the
standard syntax below.

 Compound statement: begin … end,

 May contain multiple SQL statements between begin and end.

 Local variables can be declared within a compound statements

 While and repeat statements:

 while boolean expression do

sequence of statements ;
end while

 repeat

sequence of statements ;
until boolean expression
end repeat

©Jan-16 Christopher W. Clifton 2120

©Silberschatz, Korth and Sudarshan5.45Database System Concepts - 6th Edition

Language Constructs (Cont.)

 For loop

 Permits iteration over all results of a query

 Example: Find the budget of all departments

declare n integer default 0;

for r as

select budget from department

do

set n = n + r.budget

end for

©Silberschatz, Korth and Sudarshan5.46Database System Concepts - 6th Edition

Language Constructs (Cont.)

 Conditional statements (if-then-else)

SQL:1999 also supports a case statement similar to C case statement

 Example procedure: registers student after ensuring classroom capacity

is not exceeded

 Returns 0 on success and -1 if capacity is exceeded

 See book (page 177) for details

 Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition

declare exit handler for out_of_classroom_seats

begin

…

.. signal out_of_classroom_seats

end

 The handler here is exit -- causes enclosing begin..end to be exited

 Other actions possible on exception

©Jan-16 Christopher W. Clifton 2220

©Silberschatz, Korth and Sudarshan5.47Database System Concepts - 6th Edition

External Language Routines

 SQL:1999 permits the use of functions and procedures written in other

languages such as C or C++

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),

out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))

returns integer

language C

external name ‘/usr/avi/bin/dept_count’

©Silberschatz, Korth and Sudarshan5.48Database System Concepts - 6th Edition

External Language Routines

 SQL:1999 allows the definition of procedures in an imperative programming

language, (Java, C#, C or C++) which can be invoked from SQL queries.

 Functions defined in this fashion can be more efficient than functions defined

in SQL, and computations that cannot be carried out in SQL can be

executed by these functions.

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),

out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))

returns integer

language C

external name ‘/usr/avi/bin/dept_count’

©Jan-16 Christopher W. Clifton 2320

©Silberschatz, Korth and Sudarshan5.49Database System Concepts - 6th Edition

External Language Routines (Cont.)

 Benefits of external language functions/procedures:

 more efficient for many operations, and more expressive power.

 Drawbacks

 Code to implement function may need to be loaded into database

system and executed in the database system’s address space.

 risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

 There are alternatives, which give good security at the cost of

potentially worse performance.

 Direct execution in the database system’s space is used when

efficiency is more important than security.

©Silberschatz, Korth and Sudarshan5.50Database System Concepts - 6th Edition

Security with External Language Routines

 To deal with security problems, we can do on of the following:

 Use sandbox techniques

 That is, use a safe language like Java, which cannot be used

to access/damage other parts of the database code.

 Run external language functions/procedures in a separate

process, with no access to the database process’ memory.

 Parameters and results communicated via inter-process

communication

 Both have performance overheads

 Many database systems support both above approaches as well as

direct executing in database system address space.

