
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Relational Algebra

Prof. Chris Clifton

12 September 2016

1

©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 6th Edition

Set Comparison – “all” Clause

 Find the names of all instructors whose salary is greater than the

salary of all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

from instructor

where dept name = ’Biology’);

©Jan-16 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan3.3Database System Concepts - 6th Edition

Definition of “all” Clause

 F <comp> all r t  r (F <comp> t)

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6(5  all) = true (since 5  4 and 5  6)

(5 < all

) = false(5 = all

( all)  not in

However, (= all)  in

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 6th Edition

Test for Empty Relations

 The exists construct returns the value true if the argument

subquery is nonempty.

 exists r  r  Ø

 not exists r  r = Ø

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 6th Edition

Use of “exists” Clause

 Yet another way of specifying the query “Find all courses taught in

both the Fall 2009 semester and in the Spring 2010 semester”

select course_id

from section as S

where semester = ’Fall’ and year = 2009 and

exists (select *

from section as T

where semester = ’Spring’ and year= 2010

and S.course_id = T.course_id);

 Correlation name – variable S in the outer query

 Correlated subquery – the inner query

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 6th Edition

Use of “not exists” Clause

 Find all students who have taken all courses offered in the Biology

department.

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where dept_name = ’Biology’)

except

(select T.course_id

from takes as T

where S.ID = T.ID));

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 6th Edition

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any

duplicate tuples in its result.

 The unique construct evaluates to “true” if a given subquery

contains no duplicates .

 Find all courses that were offered at most once in 2009

select T.course_id

from course as T

where unique (select R.course_id

from section as R

where T.course_id= R.course_id

and R.year = 2009);

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 6th Edition

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name)

where avg_salary > 42000;

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)

from instructor

group by dept_name) as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 6th Edition

With Clause

 The with clause provides a way of defining a temporary relation

whose definition is available only to the query in which the with

clause occurs.

 Find all departments with the maximum budget

with max_budget (value) as

(select max(budget)

from department)

select department.name

from department, max_budget

where department.budget = max_budget.value;

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 6th Edition

Complex Queries using With Clause

 Find all departments where the total salary is greater than the

average of the total salary at all departments

with dept _total (dept_name, value) as

(select dept_name, sum(salary)

from instructor

group by dept_name),

dept_total_avg(value) as

(select avg(value)

from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value > dept_total_avg.value;

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 6th Edition

Scalar Subquery

 Scalar subquery is one which is used where a single value is

expected

 List all departments along with the number of instructors in each

department

select dept_name,

(select count(*)

from instructor

where department.dept_name = instructor.dept_name)

as num_instructors

from department;

 Runtime error if subquery returns more than one result tuple

Outerjoin

The normal join can “lose” information,
because a tuple that doesn’t join with any
from the other relation (dangles) has no
vestage in the join result.

• The null value  can be used to “pad”
dangling tuples so they appear in the join.

• Gives us the outerjoin operator o .

• Variations: theta-outerjoin, left- and right-
outerjoin (pad only dangling tuples from
the left (respectively, right).

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 6th Edition

Join operations – Example

 Relation course

 Relation prereq

 Observe that

prereq information is missing for CS-315 and

course information is missing for CS-437

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 6th Edition

Left Outer Join

 course natural left outer join prereq

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan4.17Database System Concepts - 6th Edition

Right Outer Join

 course natural right outer join prereq

©Silberschatz, Korth and Sudarshan4.18Database System Concepts - 6th Edition

Joined Relations

 Join operations take two relations and return as a result

another relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations

match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not

match any tuple in the other relation (based on the join

condition) are treated.

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan4.19Database System Concepts - 6th Edition

Full Outer Join

 course natural full outer join prereq

Is outerjoin operation (o) fundamental?

A. Yes, it is a fundamental relational operation

B. No, it can be written using other relational
operations

“Constructing” outerjoin

• Cross-product
– Select (σ) on join attributes being equal

– Add in (U) the “missing” items

• Can choose either left or right outerjoin

• Same in SQL
– select *

from left, right
where left.id = right.id or left.id
UNION
select * from left where left.id not in (select id from right)
UNION
select * from left where right.id not in (select id from left)

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 6th Edition

Join operations – Example

 Relation course

 Relation prereq

 Observe that

prereq information is missing for CS-315 and

course information is missing for CS-437

©Silberschatz, Korth and Sudarshan4.22Database System Concepts - 6th Edition

Joined Relations – Examples

 course inner join prereq on

course.course_id = prereq.course_id

 What is the difference between the above, and a natural join?

 course left outer join prereq on

course.course_id = prereq.course_id

©Jan-16 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan4.23Database System Concepts - 6th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

Extended (“Nonclassical”)

Relational Algebra

Adds features needed for SQL, bags.

1. Duplicate-elimination operator .

2. Extended projection.

3. Sorting operator .

4. Grouping-and-aggregation operator .

5. Outerjoin operator o .

©Jan-16 Christopher W. Clifton 1220

CS34800

Information Systems

Procedures

Prof. Chris Clifton

14 September 2016

27

©Silberschatz, Korth and Sudarshan5.28Database System Concepts - 6th Edition

Accessing SQL From a Programming Language

 API (application-program interface) for a program to interact with a

database server

 Application makes calls to

 Connect with the database server

 Send SQL commands to the database server

 Fetch tuples of result one-by-one into program variables

 Various tools:

 JDBC (Java Database Connectivity) works with Java

 ODBC (Open Database Connectivity) works with C, C++, C#,

and Visual Basic. Other API’s such as ADO.NET sit on top of

ODBC

 Embedded SQL

©Jan-16 Christopher W. Clifton 1320

Key concept:

Cursor

• Query returns a table

– Could be viewed as a “Set” data type

– Not all programming languages deal with this

• Instead, idea of a cursor to iterate over table

– Access one row of result at a time

– Typically used in a loop construct in the language

• Query processor “understands” cursor

– Can start making results available before query

completes

©Silberschatz, Korth and Sudarshan5.30Database System Concepts - 6th Edition

JDBC

 JDBC is a Java API for communicating with database systems

supporting SQL.

 JDBC supports a variety of features for querying and updating data,

and for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of

relation attributes.

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

©Jan-16 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan5.31Database System Concepts - 6th Edition

ODBC

 Open DataBase Connectivity (ODBC) standard

 standard for application program to communicate with a

database server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan5.32Database System Concepts - 6th Edition

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of

programming languages such as C, C++, Java, Fortran, and PL/1,

 A language to which SQL queries are embedded is referred to as a

host language, and the SQL structures permitted in the host

language comprise embedded SQL.

 The basic form of these languages follows that of the System R

embedding of SQL into PL/1.

 EXEC SQL statement is used to identify embedded SQL request to

the preprocessor

EXEC SQL <embedded SQL statement >;

Note: this varies by language:

 In some languages, like COBOL, the semicolon is replaced with

END-EXEC

 In Java embedding uses # SQL { …. };

©Jan-16 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan5.33Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 Before executing any SQL statements, the program must first connect

to the database. This is done using:

EXEC-SQL connect to server user user-name using password;

Here, server identifies the server to which a connection is to be

established.

 Variables of the host language can be used within embedded SQL

statements. They are preceded by a colon (:) to distinguish from

SQL variables (e.g., :credit_amount)

 Variables used as above must be declared within DECLARE section,

as illustrated below. The syntax for declaring the variables, however,

follows the usual host language syntax.

EXEC-SQL BEGIN DECLARE SECTION}

int credit-amount ;

EXEC-SQL END DECLARE SECTION;

©Silberschatz, Korth and Sudarshan5.34Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 To write an embedded SQL query, we use the

declare c cursor for <SQL query>

statement. The variable c is used to identify the query

 Example:

 From within a host language, find the ID and name of

students who have completed more than the number of

credits stored in variable credit_amount in the host langue

 Specify the query in SQL as follows:

EXEC SQL

declare c cursor for

select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

©Jan-16 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan5.35Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 Example:

 From within a host language, find the ID and name of

students who have completed more than the number of

credits stored in variable credit_amount in the host langue

 Specify the query in SQL as follows:

EXEC SQL

declare c cursor for

select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

 The variable c (used in the cursor declaration) is used to

identify the query

©Silberschatz, Korth and Sudarshan5.36Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 The open statement for our example is as follows:

EXEC SQL open c ;

This statement causes the database system to execute the query

and to save the results within a temporary relation. The query uses

the value of the host-language variable credit-amount at the time the

open statement is executed.

 The fetch statement causes the values of one tuple in the query

result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

©Jan-16 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan5.37Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the

temporary relation that holds the result of the query.

EXEC SQL close c ;

Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan5.38Database System Concepts - 6th Edition

Updates Through Embedded SQL

 Embedded SQL expressions for database modification (update, insert,

and delete)

 Can update tuples fetched by cursor by declaring that the cursor is for

update

EXEC SQL

declare c cursor for

select *

from instructor

where dept_name = ‘Music’

for update

 We then iterate through the tuples by performing fetch operations on

the cursor (as illustrated earlier), and after fetching each tuple we

execute the following code:

update instructor

set salary = salary + 1000

where current of c

©Jan-16 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan5.39Database System Concepts - 6th Edition

Functions and Procedures

 SQL:1999 supports functions and procedures

 Functions/procedures can be written in SQL itself, or in an external

programming language (e.g., C, Java).

 Functions written in an external languages are particularly useful

with specialized data types such as images and geometric objects.

 Example: functions to check if polygons overlap, or to compare

images for similarity.

 Some database systems support table-valued functions, which

can return a relation as a result.

 SQL:1999 also supports a rich set of imperative constructs, including

 Loops, if-then-else, assignment

 Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999.

©Silberschatz, Korth and Sudarshan5.40Database System Concepts - 6th Edition

SQL Functions

 Define a function that, given the name of a department, returns the

count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))

returns integer

begin

declare d_count integer;

select count (*) into d_count

from instructor

where instructor.dept_name = dept_name

return d_count;

end

 The function dept_count can be used to find the department names

and budget of all departments with more that 12 instructors.

select dept_name, budget

from department

where dept_count (dept_name) > 12

©Jan-16 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan5.41Database System Concepts - 6th Edition

SQL functions (Cont.)

 Compound statement: begin … end

 May contain multiple SQL statements between begin and
end.

 returns -- indicates the variable-type that is returned (e.g.,
integer)

 return -- specifies the values that are to be returned as
result of invoking the function

 SQL function are in fact parameterized views that generalize
the regular notion of views by allowing parameters.

©Silberschatz, Korth and Sudarshan5.42Database System Concepts - 6th Edition

Table Functions

 SQL:2003 added functions that return a relation as a result

 Example: Return all instructors in a given department

create function instructor_of (dept_name char(20))

returns table (

ID varchar(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

return table

(select ID, name, dept_name, salary

from instructor

where instructor.dept_name = instructor_of.dept_name)

 Usage

select *

from table (instructor_of (‘Music’))

©Jan-16 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan5.43Database System Concepts - 6th Edition

SQL Procedures

 The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),

out d_count integer)

begin

select count(*) into d_count

from instructor

where instructor.dept_name = dept_count_proc.dept_name

end

 Procedures can be invoked either from an SQL procedure or from

embedded SQL, using the call statement.

declare d_count integer;

call dept_count_proc(‘Physics’, d_count);

Procedures and functions can be invoked also from dynamic SQL

 SQL:1999 allows more than one function/procedure of the same name

(called name overloading), as long as the number of

arguments differ, or at least the types of the arguments differ

©Silberschatz, Korth and Sudarshan5.44Database System Concepts - 6th Edition

Language Constructs for Procedures & Functions

 SQL supports constructs that gives it almost all the power of a general-
purpose programming language.

 Warning: most database systems implement their own variant of the
standard syntax below.

 Compound statement: begin … end,

 May contain multiple SQL statements between begin and end.

 Local variables can be declared within a compound statements

 While and repeat statements:

 while boolean expression do

sequence of statements ;
end while

 repeat

sequence of statements ;
until boolean expression
end repeat

©Jan-16 Christopher W. Clifton 2120

©Silberschatz, Korth and Sudarshan5.45Database System Concepts - 6th Edition

Language Constructs (Cont.)

 For loop

 Permits iteration over all results of a query

 Example: Find the budget of all departments

declare n integer default 0;

for r as

select budget from department

do

set n = n + r.budget

end for

©Silberschatz, Korth and Sudarshan5.46Database System Concepts - 6th Edition

Language Constructs (Cont.)

 Conditional statements (if-then-else)

SQL:1999 also supports a case statement similar to C case statement

 Example procedure: registers student after ensuring classroom capacity

is not exceeded

 Returns 0 on success and -1 if capacity is exceeded

 See book (page 177) for details

 Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition

declare exit handler for out_of_classroom_seats

begin

…

.. signal out_of_classroom_seats

end

 The handler here is exit -- causes enclosing begin..end to be exited

 Other actions possible on exception

©Jan-16 Christopher W. Clifton 2220

©Silberschatz, Korth and Sudarshan5.47Database System Concepts - 6th Edition

External Language Routines

 SQL:1999 permits the use of functions and procedures written in other

languages such as C or C++

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),

out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))

returns integer

language C

external name ‘/usr/avi/bin/dept_count’

©Silberschatz, Korth and Sudarshan5.48Database System Concepts - 6th Edition

External Language Routines

 SQL:1999 allows the definition of procedures in an imperative programming

language, (Java, C#, C or C++) which can be invoked from SQL queries.

 Functions defined in this fashion can be more efficient than functions defined

in SQL, and computations that cannot be carried out in SQL can be

executed by these functions.

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),

out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))

returns integer

language C

external name ‘/usr/avi/bin/dept_count’

©Jan-16 Christopher W. Clifton 2320

©Silberschatz, Korth and Sudarshan5.49Database System Concepts - 6th Edition

External Language Routines (Cont.)

 Benefits of external language functions/procedures:

 more efficient for many operations, and more expressive power.

 Drawbacks

 Code to implement function may need to be loaded into database

system and executed in the database system’s address space.

 risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

 There are alternatives, which give good security at the cost of

potentially worse performance.

 Direct execution in the database system’s space is used when

efficiency is more important than security.

©Silberschatz, Korth and Sudarshan5.50Database System Concepts - 6th Edition

Security with External Language Routines

 To deal with security problems, we can do on of the following:

 Use sandbox techniques

 That is, use a safe language like Java, which cannot be used

to access/damage other parts of the database code.

 Run external language functions/procedures in a separate

process, with no access to the database process’ memory.

 Parameters and results communicated via inter-process

communication

 Both have performance overheads

 Many database systems support both above approaches as well as

direct executing in database system address space.

