PURDUE

CS34800
Information Systems

Relational Algebra
Prof. Chris Clifton
12 September 2016

Indiana

Genter for

Database

J

%JSystemsc_/J5

-
J
Y.

~F

ﬂ Set Comparison - “all” Clause

~pl.

® Find the names of all instructors whose salary is greater than the
salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary
from instructor
where dept name = 'Biology’);

Database System Concepts - 6t Edition 3.2 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

ﬂ Definition of “all” Clause

=

0
(5<all |5
6
6
(G<all [10
4
(5=all[5
4
(5#all| 6

(#all)=notin

Database System Concepts - 6t Edition

B F<comp>allre Vier (F<comp>t)

) = false
) =true
) = false

) = true (since 5 # 4 and 5 # 6)

However, (= all) £in

3.3 ©Silberschatz, Korth and Sudarshan

ﬂ Test for Empty Relations

Database System Concepts - 6t Edition

B existsreorzgd

B The exists construct returns the value true if the argument
subquery is nonempty.

notexistsr< r=@

3.4 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

El Use of “exists” Clause

altr.

B Yet another way of specifying the query “Find all courses taught in
both the Fall 2009 semester and in the Spring 2010 semester”

select course_id
from section as S
where semester = 'Fall’ and year = 2009 and
exists (select *
from sectionas T
where semester = 'Spring’ and year= 2010
and S.course_id = T.course_id);

m Correlation name — variable S in the outer query
m Correlated subquery — the inner query

©Silberschatz, Korth and Sudarshan

Database System Concepts - 6t Edition 3.5

ﬂ Use of “not exists” Clause

® Find all students who have taken all courses offered in the Biology
department.

select distinct S.ID, S.name
from student as S
where not exists ((select course_id
from course
where dept_name = 'Biology’)
except
(select T.course_id
from takes as T
where S.ID = T.ID));

* First nested query lists all courses offered in Biology
* Second nested query lists all courses a particular student took

B NotethatX-Y=0@ < XcVY

m Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan

Database System Concepts - 6t Edition 3.6

© 2016 Christopher W. Clifton

ﬂ Test for Absence of Duplicate Tuples

® The unique construct tests whether a subquery has any
duplicate tuples in its result.

® The unique construct evaluates to “true” if a given subquery
contains no duplicates .

® Find all courses that were offered at most once in 2009

select T.course_id
fromcourseas T
where unique (select R.course_id
from section as R
where T.course_id= R.course_id
and R.year = 2009);

Database System Concepts - 6t Edition 3.7 ©Silberschatz, Korth and Sudarshan

ﬂ Subqueries in the From Clause

SQL allows a subquery expression to be used in the from clause

Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.”

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name)
where avg_salary > 42000;
Note that we do not need to use the having clause
® Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)
from instructor
group by dept_name) as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

Database System Concepts - 6t Edition 3.8 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

ﬂ With Clause

B The with clause provides a way of defining a temporary relation
whose definition is available only to the query in which the with
clause occurs.

® Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)
select department.name
from department, max_budget
where department.budget = max_budget.value;

Database System Concepts - 6t Edition 3.9 ©Silberschatz, Korth and Sudarshan

ﬂ Complex Queries using With Clause

® Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),
dept_total _avg(value) as
(select avg(value)
from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value;

Database System Concepts - 6t Edition 3.10 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

E Scalar Subquery

—

B Scalar subquery is one which is used where a single value is
expected

m List all departments along with the number of instructors in each
department

select dept_name,
(select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors
from department;

® Runtime error if subquery returns more than one result tuple

Database System Concepts - 6t Edition 3.11 ©Silberschatz, Korth and Sudarshan

BES) Outerjoin

The normal join can “lose” information,
because a tuple that doesn’t join with any
from the other relation (dangles) has no
vestage in the join result.

* The null value L can be used to “pad”
dangling tuples so they appear in the join.

» Gives us the outerjoin operator .

 Variations: theta-outerjoin, left- and right-
outerjoin (pad only dangling tuples from
the left (respectively, right).

© 2016 Christopher W. Clifton

g Join operations — Example

® Relation course

course_id| title | dept_name | credits
BIO-301 | Genetics Biology 4
CS5-190 |Game Design| Comp. Sci. | 4
CS-315 | Robotics Comp. Sci. | 3

® Relation prereq

course_id | prereq_id
BIO-301 | BIO-101
CS-190 | CS-101
CS-347 | CS-101

B Observe that

prereq information is missing for CS-315 and
course informationis missing for CS-437

Database System Concepts - 6t Edition

4.15 ©Silberschatz, Korth and Sudarshan

g Left Outer Join

B course natural left outer join prereq

Icom'se_idl title | dept_name | credits | prereq_id I
BIO-301 | Genetics Biology 4 BIO-101

CS-190 [Game Design| Comp. Sci. 4 CS-101
CS-315 |[Robotics Comp. Sci. 3

null

Database System Concepts - 6t" Edition 4.16

©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

ﬂ Right Outer Join

another relation.

expressions in the from clause

condition) are treated.

m course natural right outer join prereq
[course_id| title | dept_name | credits | prereq_id |
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 [Game Design| Comp. Sci. 4 CS-101
CS-347 | null null null | CS-101
Database System Concepts - 6t Edition 4.17 ©Silberschatz, Korth and Sudarshan
E,.ﬂ Joined Relations

® Join operations take two relations and return as a result
B These additional operations are typically used as subquery

B Join condition — defines which tuples in the two relations
match, and what attributes are present in the result of the join.

® Join type — defines how tuples in each relation that do not
match any tuple in the other relation (based on the join

Join types Join Conditions
inner join natural

left outer join on < predicate>
right outer join using (A1, Ay, ..., Ay)
full outer join

Database System Concepts - 6t" Edition 4.18

©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

ﬂ Full Outer Join

-

m course natural full outer join prereq

[course_id| title | dept_name | credits | prereq_id|
BIO-301 | Genetics Biology 4 BIO-101
C5-190 | Game Design| Comp. Sci. 4 C5-101
CS-315 [Robotics Comp. Sci. 3 null
CS-347 | null null null | CS-101

Is outerjoin operation (=%) fundamental?
A. Yes, itis a fundamental relational operation

B. No, it can be written using other relational
operations

Database System Concepts - 6t Edition 4.19 ©Silberschatz, Korth and Sudarshan

=% “Constructing” outerjoin
- *

* Cross-product
— Select (o) on join attributes being equal
— Add in (U) the “missing” items
« Can choose either left or right outerjoin
+ Same in SQL

— select *
from left, right
where left.id = right.id or left.id
UNION
select * from left where left.id not in (select id from right)
UNION
select * from left where right.id not in (select id from left)

© 2016 Christopher W. Clifton

g Join operations — Example

® Relation course

course_id| title | dept_name | credits
BIO-301 | Genetics Biology 4
CS5-190 |Game Design| Comp. Sci. | 4
CS-315 | Robotics Comp. Sci. | 3

® Relation prereq

course_id | prereg_id

BIO-301 | BIO-101
CS-190 | CS-101
CS-347 | C5-101

B Observe that

prereq information is missing for CS-315 and
course informationis missing for CS-437

Database System Concepts - 6t Edition

4.21

©Silberschatz, Korth and Sudarshan

g Joined Relations — Examples

B course inner join prereq on
course.course_id = prereg.course_id

[course_id| title | dept_name | credits | prereq_id| course_id |

BIO-301 | Genetics Biology -+ BIO-101 | BIO-301
CS-190 [Game Design| Comp. Sci. | 4 CS-101 | CS-190

B What is the difference between the above, and a natural join?
B course left outer join prereq on
course.course_id = prereg.course_id

[course_id| title | dept_name | credits | prereq_id| course_id|
BIO-301 | Genetics Biology 4 BIO-101 | BIO-301
C5-190 | Game Design | Comp. Sci. 4 C5-101 | CS-190
CS-315 [Robotics Comp. Sci. 3 null null

Database System Concepts - 6t" Edition 4.22 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

10

ﬂ Joined Relations — Examples

=

B course natural right outer join prereq

|course_id| title | dept_name | credits | prereq_id |
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 [Game Design | Comp. Sci. 4 CS5-101
CS-347 | null null null | CS-101

m course full outer join prereq using (course_id)

[course_id| title | dept_name | credits | prereq_id |
BIO-301 | Genetics Biology 4 BIO-101
C5-190 | Game Design | Comp. Sci. 4 CS-101
CS-315 [Robotics Comp. Sci. 3 null
CS-347 | null null null | CS-101
Database System Concepts - 6t Edition 4.23 ©Silberschatz, Korth and Sudarshan

Extended (“Nonclassical’)
Relational Algebra

Adds features needed for SQL, bags.

1. Duplicate-elimination operator o.
Extended projection.

Sorting operator .
Grouping-and-aggregation operator y.
Outerjoin operator % .

aprwnN

© 2016 Christopher W. Clifton

11

PURDUE

CS34800
Information Systems

Procedures
Prof. Chris Clifton
14 September 2016

Indiana

Gemter for
J Database

-
27
P /f ™

ESystemsc_/i'

EL' Accessing SQL From a Programming Language

=

m API (application-program interface) for a program to interact with a
database server

m Application makes calls to

Connect with the database server

Send SQL commands to the database server

Fetch tuples of result one-by-one into program variables
® Various tools:

JDBC (Java Database Connectivity) works with Java

ODBC (Open Database Connectivity) works with C, C++, C#,
and Visual Basic. Other API's such as ADO.NET sit on top of
ODBC

Embedded SQL

Database System Concepts - 6t Edition 5.28 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

12

Key concept:
Cursor

* Query returns a table
— Could be viewed as a “Set” data type
— Not all programming languages deal with this
* Instead, idea of a cursor to iterate over table
— Access one row of result at a time
— Typically used in a loop construct in the language
» Query processor “‘understands” cursor

— Can start making results available before query
completes

15

JDBC

® JDBC is a Java API for communicating with database systems
supporting SQL.

m JDBC supports a variety of features for querying and updating data,
and for retrieving query results.

m JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes.

® Model for communicating with the database:
Open a connection
Create a “statement” object

Execute queries using the Statement object to send queries and
fetch results

Exception mechanism to handle errors

Database System Concepts - 6t Edition 5.30 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

13

E ODBC

® Open DataBase Connectivity (ODBC) standard

standard for application program to communicate with a
database server.

application program interface (API) to
» open a connection with a database,
» send queries and updates,
» get back results.
m Applications such as GUI, spreadsheets, etc. can use ODBC

Database System Concepts - 6t Edition 5.31 ©Silberschatz, Korth and Sudarshan

E Embedded SQL

-

m The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, C++, Java, Fortran, and PL/1,

® A language to which SQL queries are embedded is referred to as a
host language, and the SQL structures permitted in the host
language comprise embedded SQL.

® The basic form of these languages follows that of the System R
embedding of SQL into PL/1.

m EXEC SQL statement is used to identify embedded SQL request to
the preprocessor

EXEC SQL <embedded SQL statement >;
Note: this varies by language:

In some languages, like COBOL, the semicolonis replaced with
END-EXEC

In Java embeddinguses #SQL{....};

Database System Concepts - 6t Edition 5.32 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

14

ﬂ Embedded SQL (Cont.)

m Before executing any SQL statements, the program must first connect
to the database. This is done using:

EXEC-SQL connect to server user user-name using password;

Here, server identifies the server to which a connection is to be
established.

® Variables of the host language can be used within embedded SQL
statements. They are preceded by a colon (:) to distinguish from
SQL variables (e.g., :credit_amount)

m Variables used as above must be declared within DECLARE section,
as illustrated below. The syntax for declaring the variables, however,
follows the usual host language syntax.

EXEC-SQL BEGIN DECLARE SECTION}
int credit-amount ;
EXEC-SQL END DECLARE SECTION;

Database System Concepts - 6t Edition 5.33 ©Silberschatz, Korth and Sudarshan

ﬂ Embedded SQL (Cont.)

e

® To write an embedded SQL query, we use the
declare c cursor for <SQL query>
statement. The variable ¢ is used to identify the query
m Example:

From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amountin the host langue

Specify the query in SQL as follows:
EXEC SQL

declare ¢ cursor for

select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

Database System Concepts - 6t Edition 5.34 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

15

E‘ﬂg Embedded SQL (Cont.)

m Example:

From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amountin the host langue

m Specify the query in SQL as follows:
EXEC SQL

declare ¢ cursor for

select ID, name

from student

where tot_cred > :credit_amount

END_EXEC
® The variable c (used in the cursor declaration) is used to
identify the query
Database System Concepts - 6t Edition 5.35 ©Silberschatz, Korth and Sudarshan

Embedded SQL (Cont.)

B The open statement for our example is as follows:
EXEC SQL openc;

This statement causes the database system to execute the query
and to save the results within a temporary relation. The query uses
the value of the host-language variable credit-amount at the time the
open statement is executed.

m The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch cinto :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

Database System Concepts - 6t Edition 5.36 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

16

E‘ﬂg Embedded SQL (Cont.)

® Avariable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

® The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL closec;

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

Database System Concepts - 6t Edition 5.37 ©Silberschatz, Korth and Sudarshan

E‘ Updates Through Embedded SQL

1f

® Embedded SQL expressions for database modification (update, insert,
and delete)

m Can update tuples fetched by cursor by declaring that the cursor is for
update

EXEC SQL

declare c cursor for
select *

from instructor

where dept_name = ‘Music’
for update

m We then iterate through the tuples by performing fetch operations on
the cursor (as illustrated earlier), and after fetching each tuple we
execute the following code:

update instructor
set salary = salary + 1000
where current of ¢

Database System Concepts - 6t Edition 5.38 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

17

E,.l Functions and Procedures

-

® SQL:1999 supports functions and procedures

Functions/procedures can be written in SQL itself, or in an external
programming language (e.g., C, Java).

Functions written in an external languages are particularly useful
with specialized data types such as images and geometric objects.

» Example: functions to check if polygons overlap, or to compare
images for similarity.

Some database systems support table-valued functions, which
can return a relation as a result.

® SQL:1999 also supports a rich set of imperative constructs, including
Loops, if-then-else, assignment

B Many databases have proprietary procedural extensions to SQL that
differ from SQL:1999.

Database System Concepts - 6t Edition 5.39 ©Silberschatz, Korth and Sudarshan

ﬂ SQL Functions

®m Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;
select count (*) into d_count
from instructor
where instructor.dept_name = dept_name
return d_count;
end

® The function dept_count can be used to find the department names
and budget of all departments with more that 12 instructors.

select dept_name, budget
from department
where dept_count (dept_name) > 12

Database System Concepts - 6t Edition 5.40 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

18

E SQL functions (Cont.)

m Compound statement: begin ... end

May contain multiple SQL statements between begin and
end.

m returns --indicates the variable-type that is returned (e.g.,
integer)

m return -- specifies the values that are to be returned as
result of invoking the function

m SQL function are in fact parameterized views that generalize
the regular notion of views by allowing parameters.

Database System Concepts - 6t Edition 5.41 ©Silberschatz, Korth and Sudarshan

ﬂ Table Functions

Ze

B SQL:2003 added functions that return a relation as a result
m Example: Return all instructors in a given department
create function instructor_of (dept_name char(20))
returns table (

ID varchar(b),

name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructor_of.dept_name)

m Usage

select *
from table (instructor_of (‘Music’))

Database System Concepts - 6t Edition 5.42 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

19

E SQL Procedures

m The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)
begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

m Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc(‘Physics’, d_count);

Procedures and functions can be invoked also from dynamic SQL

® SQL:1999 allows more than one function/procedure of the same name
(called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

Database System Concepts - 6t Edition 5.43 ©Silberschatz, Korth and Sudarshan

E{‘._l Language Constructs for Procedures & Functions

—

m SQL supports constructs that gives it almost all the power of a general-
purpose programming language.

Warning: most database systems implement their own variant of the
standard syntax below.

m Compound statement: begin ... end,
May contain multiple SQL statements between begin and end.
Local variables can be declared within a compound statements
m While and repeat statements:

while boolean expression do
sequence of statements;
end while

repeat
sequence of statements;
until boolean expression
end repeat

Database System Concepts - 6t Edition 5.44 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

20

ﬂ Language Constructs (Cont.)

Lo

= For loop
Permits iteration over all results of a query
m Example: Find the budget of all departments

declare n integer default O;
forr as

select budget from department
do
setn =n + r.budget
end for

Database System Concepts - 6t Edition 5.45 ©Silberschatz, Korth and Sudarshan

ﬂ Language Constructs (Cont.)

m Conditional statements (if-then-else)
SQL:1999 also supports a case statement similar to C case statement

m Example procedure: registers student after ensuring classroom capacity
is not exceeded

Returns 0 on success and -1 if capacity is exceeded
See book (page 177) for details

m Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition
declare exit handler for out_of_classroom_seats
begin

.. signal out_of _classroom_seats
end

The handler here is exit -- causes enclosing begin..end to be exited
Other actions possible on exception

Database System Concepts - 6t Edition 5.46 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

E,.I External Language Routines

B SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++

m Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C

external name’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer

language C

external name ‘/usr/avi/bin/dept_count’

Database System Concepts - 6t Edition 5.47 ©Silberschatz, Korth and Sudarshan

E,.l External Language Routines

—

B SQL:1999 allows the definition of procedures in an imperative programming
language, (Java, C#, C or C++) which can be invoked from SQL queries.

® Functions defined in this fashion can be more efficient than functions defined
in SQL, and computations that cannot be carried out in SQL can be
executed by these functions.

m Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer

language C

external name ‘/usr/avi/bin/dept_count’

Database System Concepts - 6t Edition 5.48 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

22

ﬂ External Language Routines (Cont.)

Lo

m Benefits of external language functions/procedures:
more efficient for many operations, and more expressive power.
m Drawbacks

Code to implement function may need to be loaded into database
system and executed in the database system’s address space.

» risk of accidental corruption of database structures

» security risk, allowing users access to unauthorized data

There are alternatives, which give good security at the cost of
potentially worse performance.

Direct execution in the database system’s space is used when
efficiency is more important than security.

Database System Concepts - 6t Edition 5.49 ©Silberschatz, Korth and Sudarshan

E,.Il Security with External Language Routines

Lo

m To deal with security problems, we can do on of the following:
Use sandbox techniques

» That is, use a safe language like Java, which cannot be used
to access/damage other parts of the database code.

Run external language functions/procedures in a separate
process, with no access to the database process’ memory.

» Parameters and results communicated via inter-process
communication

m Both have performance overheads

® Many database systems support both above approaches as well as
direct executing in database system address space.

Database System Concepts - 6t Edition 5.50 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

