
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Relational Algebra

Prof. Chris Clifton

7 September 2016

1

Extended Projection

Allow the columns in the projection to be functions
of one or more columns in the argument relation.

Example
R = A B

1 2

3 4

A+B,A,A(R) =

A+B A1 A2

3 1 1

7 3 3

©Jan-16 Christopher W. Clifton 220

Sorting

• L(R) = list of tuples of R, ordered according to
attributes on list L.

• Note that result type is outside the normal types (set
or bag) for relational algebra.
– Consequence:  cannot be followed by other relational

operators.

Example

R = A B

1 3

3 4

5 2

B(R) = [(5,2), (1,3), (3,4)].

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 6th Edition

Aggregate Functions

 These functions operate on the multiset of values of a column of

a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

©Jan-16 Christopher W. Clifton 320

Aggregation Operators

• These are not relational operators; rather they
summarize a column in some way.

• Five standard operators: Sum, Average, Count, Min,
and Max.

• Use with grouping (later today) or shorthand as
“special” projection:

• R: A B
1 2
3 4

Max(A), Min(B)(R) =
Max(A) Min(B)

3 2
• Remember: Aggregations return a single row – can’t

combine with non-aggregates in projection

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 6th Edition

Aggregate Functions (Cont.)

 Find the average salary of instructors in the Computer Science

department

 select avg (salary)

from instructor

where dept_name= ’Comp. Sci.’;

 Find the total number of instructors who teach a course in the Spring

2010 semester

 select count (distinct ID)

from teaches

where semester = ’Spring’ and year = 2010;

 Find the number of tuples in the course relation

 select count (*)

from course;

©Jan-16 Christopher W. Clifton 420

Aggregate Example

• select avg (salary)
from instructor
where
dept_name= ’Finance’;

• Returns how many rows?

A. 0

B. 1

C. 2

D. 12

E. Not a valid query

7

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 6th Edition

Aggregate Functions – Group By

 Find the average salary of instructors in each department

 select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

avg_salary

©Jan-16 Christopher W. Clifton 520

Grouping Operator


L(R), where L is a list of elements that are either

a) Individual (grouping) attributes or
b) Of the form (A), where  is an aggregation

operator
and A the attribute to which it is applied,

is computed by:
1. Group R according to all the grouping attributes on

list L.
2. Within each group, compute (A), for each element

(A) on list L.
3. Result is the relation whose columns consist of one

tuple for each group. The components of that tuple
are the values associated with each element of L
for that group.

©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 6th Edition

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must appear

in group by list

 /* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

©Jan-16 Christopher W. Clifton 620

CS34800

Information Systems

Relational Algebra

Prof. Chris Clifton

9 September 2016

13

©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 6th Edition

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose

average salary is greater than 42000

Note: predicates in the having clause are applied after the

formation of groups whereas predicates in the where

clause are applied before forming groups

select dept_name, avg (salary)

from instructor

group by dept_name

having avg (salary) > 42000;

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 6th Edition

Null Values and Aggregates

 Total all salaries

select sum (salary)

from instructor

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null values

on the aggregated attributes

 What if collection has only null values?

 count returns 0

 all other aggregates return null

How many events this

weekend?
Title Date Time Location

Corporate

Partner UG

Mixer

Sep 11 7:30pm
LWSN

Commons

CS Career

Fair
Sep 12 5:00pm CoRec

Boiler

Bridge Walk
Sep 9 5:45pm

Myers

Bridge

Black Lives

Matter

Panel

Discussion

Sep 13 6:30pm
STEW

Fowler Hall

Hulu Tech

Talk
Sep 12 12:00pm HAAS 101

Gary

Johnson
Sep 13 5:00pm CoRec

CS348

Midterm
11:30am ARMS 1010

A. select * from events
where date between
to_date(‘Sep 10’) and
to_date(‘Sep 11’)

B. select count(*) from events
having date between
to_date(‘Sep 10’) and
to_date(‘Sep 11’)

C. 𝑐𝑜𝑢𝑛𝑡(∗)𝜎𝐷𝑎𝑡𝑒≥𝑆𝑒𝑝 10^𝐷𝑎𝑡𝑒≤𝑆𝑒𝑝 11
events

D. select count(*) from events
group by Date
having date between
to_date(‘Sep 10’) and
to_date(‘Sep 11’)

©Jan-16 Christopher W. Clifton 820

How many events each day?

Title Date Time Location

Corporate

Partner UG

Mixer

Sep 11 7:30pm
LWSN

Commons

CS Career

Fair
Sep 12 5:00pm CoRec

Boiler

Bridge Walk
Sep 9 5:45pm

Myers

Bridge

Black Lives

Matter

Panel

Discussion

Sep 13 6:30pm
STEW

Fowler Hall

Hulu Tech

Talk
Sep 12 12:00pm HAAS 101

Gary

Johnson
Sep 13 5:00pm CoRec

CS348

Midterm
11:30am ARMS 1010

A. select * from events
group by Date

B. select count(*)
from events
group by Date

C. 𝛾𝐷𝑎𝑡𝑒events

D. select count(*)
from events
group by Date
having date between
to_date(‘Sep 10’) and
to_date(‘Sep 11’)

Question: 1st Midterm

A: September 26
• Will have completed 5 weeks

• Assignment 1, project 1
graded and returned

• Assignment 2 (relational
algebra) complete, solution
set available
No late assignment 2 would
be accepted

• I would hold office hours
Saturday, 9/24

If no exam, will be guest lecture
this day

B: October 3

• Assignment 1+2,
project 1 graded and
returned

• Middle of Project 2
C: October 14

• Expect some database
design questions

• Graded and returned
shortly before drop date

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 6th Edition

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries. A subquery

is a select-from-where expression that is nested within another query.

 The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

 Ai can be replaced be a subquery that generates a single value.

 ri can be replaced by any valid subquery

 P can be replaced with an expression of the form:

B <operation> (subquery)

Where B is an attribute and <operation> to be defined later.

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 6th Edition

Subqueries in the Where Clause

 A common use of subqueries is to perform tests:

 For set membership

 For set comparisons

 For set cardinality.

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 6th Edition

Set Membership

 Find courses offered in Fall 2009 and in Spring 2010

 Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id in (select course_id

from section

where semester = ’Spring’ and year= 2010);

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id

from section

where semester = ’Spring’ and year= 2010);

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 6th Edition

Set Membership (Cont.)

 Find the total number of (distinct) students who have taken course

sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner.

The formulation above is simply to illustrate SQL features.

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year

from teaches

where teaches.ID= 10101);

©Jan-16 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan3.23Database System Concepts - 6th Edition

Set Comparison – “some” Clause

 Find names of instructors with salary greater than that of some (at

least one) instructor in the Biology department.

 Same query using > some clause

select name

from instructor

where salary > some (select salary

from instructor

where dept name = ’Biology’);

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept name = ’Biology’;

©Silberschatz, Korth and Sudarshan3.24Database System Concepts - 6th Edition

Definition of “some” Clause

 F <comp> some r t  r such that (F <comp> t)

Where <comp> can be:     

0
5

6

(5 < some) = true

0
5

0

) = false

5

0
5(5  some) = true (since 0  5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some)  in

However, ( some)  not in

©Jan-16 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan3.25Database System Concepts - 6th Edition

Set Comparison – “all” Clause

 Find the names of all instructors whose salary is greater than the

salary of all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

from instructor

where dept name = ’Biology’);

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 6th Edition

Definition of “all” Clause

 F <comp> all r t  r (F <comp> t)

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6(5  all) = true (since 5  4 and 5  6)

(5 < all

) = false(5 = all

( all)  not in

However, (= all)  in

©Jan-16 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan3.27Database System Concepts - 6th Edition

Test for Empty Relations

 The exists construct returns the value true if the argument

subquery is nonempty.

 exists r  r  Ø

 not exists r  r = Ø

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 6th Edition

Use of “exists” Clause

 Yet another way of specifying the query “Find all courses taught in

both the Fall 2009 semester and in the Spring 2010 semester”

select course_id

from section as S

where semester = ’Fall’ and year = 2009 and

exists (select *

from section as T

where semester = ’Spring’ and year= 2010

and S.course_id = T.course_id);

 Correlation name – variable S in the outer query

 Correlated subquery – the inner query

©Jan-16 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 6th Edition

Use of “not exists” Clause

 Find all students who have taken all courses offered in the Biology

department.

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where dept_name = ’Biology’)

except

(select T.course_id

from takes as T

where S.ID = T.ID));

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 6th Edition

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any

duplicate tuples in its result.

 The unique construct evaluates to “true” if a given subquery

contains no duplicates .

 Find all courses that were offered at most once in 2009

select T.course_id

from course as T

where unique (select R.course_id

from section as R

where T.course_id= R.course_id

and R.year = 2009);

©Jan-16 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 6th Edition

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name)

where avg_salary > 42000;

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)

from instructor

group by dept_name) as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 6th Edition

With Clause

 The with clause provides a way of defining a temporary relation

whose definition is available only to the query in which the with

clause occurs.

 Find all departments with the maximum budget

with max_budget (value) as

(select max(budget)

from department)

select department.name

from department, max_budget

where department.budget = max_budget.value;

©Jan-16 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 6th Edition

Complex Queries using With Clause

 Find all departments where the total salary is greater than the

average of the total salary at all departments

with dept _total (dept_name, value) as

(select dept_name, sum(salary)

from instructor

group by dept_name),

dept_total_avg(value) as

(select avg(value)

from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value > dept_total_avg.value;

©Silberschatz, Korth and Sudarshan3.34Database System Concepts - 6th Edition

Scalar Subquery

 Scalar subquery is one which is used where a single value is

expected

 List all departments along with the number of instructors in each

department

select dept_name,

(select count(*)

from instructor

where department.dept_name = instructor.dept_name)

as num_instructors

from department;

 Runtime error if subquery returns more than one result tuple

©Jan-16 Christopher W. Clifton 1720

Outerjoin

The normal join can “lose” information,
because a tuple that doesn’t join with any
from the other relation (dangles) has no
vestage in the join result.

• The null value  can be used to “pad”
dangling tuples so they appear in the join.

• Gives us the outerjoin operator o .

• Variations: theta-outerjoin, left- and right-
outerjoin (pad only dangling tuples from
the left (respectively, right).

©Silberschatz, Korth and Sudarshan4.38Database System Concepts - 6th Edition

Left Outer Join

 course natural left outer join prereq

©Jan-16 Christopher W. Clifton 1820

©Silberschatz, Korth and Sudarshan4.39Database System Concepts - 6th Edition

Right Outer Join

 course natural right outer join prereq

©Silberschatz, Korth and Sudarshan4.40Database System Concepts - 6th Edition

Joined Relations

 Join operations take two relations and return as a result

another relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations

match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not

match any tuple in the other relation (based on the join

condition) are treated.

©Jan-16 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan4.41Database System Concepts - 6th Edition

Full Outer Join

 course natural full outer join prereq

©Silberschatz, Korth and Sudarshan4.42Database System Concepts - 6th Edition

Joined Relations – Examples

 course inner join prereq on

course.course_id = prereq.course_id

 What is the difference between the above, and a natural join?

 course left outer join prereq on

course.course_id = prereq.course_id

©Jan-16 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan4.43Database System Concepts - 6th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

Extended (“Nonclassical”)

Relational Algebra

Adds features needed for SQL, bags.

1. Duplicate-elimination operator .

2. Extended projection.

3. Sorting operator .

4. Grouping-and-aggregation operator .

5. Outerjoin operator o .

