
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Views

Prof. Chris Clifton

21 October 2016

Views: Idea

• Properly normalized tables not always

“convenient”

• Career Last First Address

Fall 2016 Chris Clifton - CS34800 75

Career Last First Address Course

clifton Clifton Chris LWSN 2142F CS34800

clifton Clifton Chris LWSN 2142F CS54100

Career Last First Address

clifton Clifton Chris LWSN 2142F

Career Course

clifton CS34800

clifton CS54100

©Jan-16 Christopher W. Clifton 220

Views: Idea

• Properly normalized tables not always

“convenient”

• select * from course where course =

‘CS34800’

– Seems simpler than a join

Fall 2016 Chris Clifton - CS34800 76

Career Last First Address Course

clifton Clifton Chris LWSN 2142F CS34800

clifton Clifton Chris LWSN 2142F CS54100

Views: Idea

• Start with normalized tables

• Create “view” for convenience

– create view courseList as

select i.Career, Last, First, Address, Course

from instructors I, courses c

where i.Career = c.Career

Fall 2016 Chris Clifton - CS34800 77

Career Last First Address Course

clifton Clifton Chris LWSN 2142F CS34800

clifton Clifton Chris LWSN 2142F CS54100

Career Last First Address

clifton Clifton Chris LWSN 2142F

Career Course

clifton CS34800

clifton CS54100

©Jan-16 Christopher W. Clifton 320

Views: Idea

• create view courseList as
select i.Career, Last, First, Address,
Course
from instructors I, courses c
where i.Career = c.Career

• courseList can now be used in a query just
like a table!

Fall 2016 Chris Clifton - CS34800 78

Career Last First Address Course

clifton Clifton Chris LWSN 2142F CS34800

clifton Clifton Chris LWSN 2142F CS54100

View: Semantics

• Contents of view are current at the time it
is used

– If base tables are updated, view is updated

• Equivalent to replacing the view with a
subquery
select * from courseList where course=‘CS34800’ ≡
select * from

(select i.Career, Last, First, Address, Course
from instructors I, courses c
where i.Career = c.Career)

where course=‘CS34800’

Fall 2016 Chris Clifton - CS34800 79

©Jan-16 Christopher W. Clifton 420

Views: Uses

• Clarity for user / developer
– Users see what they expect/want

– Different views for different users/uses
• Multiple logical views of database

• Simplification
– “abstraction” for query

• Performance
– Don’t need to re-run the query

• Access Control
– Give access only to view, not entire data

Fall 2016 Chris Clifton - CS34800 80

SQL Access Control

• grant select on <table> to <user>;

– grant insert, delete, update

– with grant option

• Allows “passing on” privileges

• <table> can also be a view

– But some caveats on updating/insert/delete

Fall 2016 Chris Clifton - CS34800 81

©Jan-16 Christopher W. Clifton 520

Update issue

• Insert into courseList values

(‘clifton’, ‘Clifton’, ‘Chris’, ‘LWSN 2142F’,

‘CS54701’);

Fall 2016 Chris Clifton - CS34800 82

Career Last First Address Course

clifton Clifton Chris LWSN 2142F CS34800

clifton Clifton Chris LWSN 2142F CS54100

Career Last First Address

clifton Clifton Chris LWSN 2142F

Career Course

clifton CS34800

clifton CS54100

Career Last First Address

clifton Clifton Chris LWSN 2142F

clifton Clifton Chris LWSN 2142F

Career Course

clifton CS34800

clifton CS54100

clifton CS54701

©Silberschatz, Korth and Sudarshan4.83Database System Concepts - 6th Edition

Example Views

 A view of instructors without their salary

create view faculty as

select ID, name, dept_name

from instructor

 Find all instructors in the Biology department

select name

from faculty

where dept_name = ‘Biology’

 Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as

select dept_name, sum (salary)

from instructor

group by dept_name;

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan4.84Database System Concepts - 6th Edition

Views Defined Using Other Views

 create view physics_fall_2009 as

select course.course_id, sec_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = ’Physics’

and section.semester = ’Fall’

and section.year = ’2009’;

 create view physics_fall_2009_watson as

select course_id, room_number

from physics_fall_2009

where building= ’Watson’;

©Silberschatz, Korth and Sudarshan4.87Database System Concepts - 6th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier

insert into faculty values (’30765’, ’Green’, ’Music’);

This insertion must be represented by the insertion of the tuple

(’30765’, ’Green’, ’Music’, null)

into the instructor relation

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan4.88Database System Concepts - 6th Edition

Some Updates cannot be Translated Uniquely

 create view instructor_info as

select ID, name, building

from instructor, department

where instructor.dept_name= department.dept_name;

 insert into instructor_info values (’69987’, ’White’, ’Taylor’);

which department, if multiple departments in Taylor?

what if no department is in Taylor?

 Most SQL implementations allow updates only on simple views

 The from clause has only one database relation.

 The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates, or

distinct specification.

 Any attribute not listed in the select clause can be set to null

 The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan4.89Database System Concepts - 6th Edition

And Some Not at All

 create view history_instructors as

select *

from instructor

where dept_name= ’History’;

 What happens if we insert (’25566’, ’Brown’, ’Biology’, 100000)

into history_instructors?

©Jan-16 Christopher W. Clifton 820

Materialized View

• Remember we crossed off Performance?

• Materialized view: Create “copy” when
view is created

– Run query and save results

– Gives performance benefits

• Problem: Need to update when base
tables updated

– Various semantics for this, depending on
DBMS

