
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Update and Transactions

Prof. Chris Clifton

19 October 2016

©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 6th Edition

Deletion

 Delete all instructors

delete from instructor

 Delete all instructors from the Finance department

delete from instructor

where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors

associated with a department located in the Watson building.

delete from instructor

where dept name in (select dept name

from department

where building = ’Watson’);

©Jan-16 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan3.3Database System Concepts - 6th Edition

Deletion (Cont.)

 Delete all instructors whose salary is less than the average salary of

instructors

delete from instructor

where salary < (select avg (salary)

from instructor);

 Problem: as we delete tuples from deposit, the average salary

changes

 Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without

recomputing avg or retesting the tuples)

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 6th Edition

Insertion

 Add a new tuple to course

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently

insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with tot_creds set to null

insert into student

values (’3003’, ’Green’, ’Finance’, null);

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 6th Edition

Insertion (Cont.)

 Add all instructors to the student relation with tot_creds set to 0

insert into student

select ID, name, dept_name, 0

from instructor

 The select from where statement is evaluated fully before any of its

results are inserted into the relation.

Otherwise queries like

insert into table1 select * from table1

would cause problem

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 6th Edition

Updates

 Increase salaries of instructors whose salary is over $100,000

by 3%, and all others by a 5%

 Write two update statements:

update instructor

set salary = salary * 1.03

where salary > 100000;

update instructor

set salary = salary * 1.05

where salary <= 100000;

 The order is important

 Can be done better using the case statement (next slide)

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 6th Edition

Case Statement for Conditional Updates

 Same query as before but with case statement

update instructor

set salary = case

when salary <= 100000 then salary * 1.05

else salary * 1.03

end

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 6th Edition

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students

update student S

set tot_cred = (select sum(credits)

from takes, course

where takes.course_id = course.course_id and

S.ID= takes.ID.and

takes.grade <> ’F’ and

takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course

 Instead of sum(credits), use:

case

when sum(credits) is not null then sum(credits)

else 0

end

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan4.10Database System Concepts - 6th Edition

Integrity Constraints on a Single Relation

 not null

 primary key

 unique

 check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan4.11Database System Concepts - 6th Edition

Not Null and Unique Constraints

 not null

 Declare name and budget to be not null

name varchar(20) not null

budget numeric(12,2) not null

 unique (A1, A2, …, Am)

 The unique specification states that the attributes A1, A2, …

Am

form a candidate key.

 Candidate keys are permitted to be null (in contrast to primary

keys).

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan4.12Database System Concepts - 6th Edition

The check clause

 check (P)

where P is a predicate

Example: ensure that semester is one of fall, winter, spring

or summer:

create table section (

course_id varchar (8),

sec_id varchar (8),

semester varchar (6),

year numeric (4,0),

building varchar (15),

room_number varchar (7),

time slot id varchar (4),

primary key (course_id, sec_id, semester, year),

check (semester in (’Fall’, ’Winter’, ’Spring’, ’Summer’))

);

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 6th Edition

Cascading Actions in Referential Integrity

 create table course (

course_id char(5) primary key,

title varchar(20),

dept_name varchar(20) references department

)

 create table course (

…

dept_name varchar(20),

foreign key (dept_name) references department

on delete cascade

on update cascade,

. . .

)

 alternative actions to cascade: set null, set default

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 6th Edition

Integrity Constraint Violation During

Transactions

 E.g.

create table person (

ID char(10),

name char(40),

mother char(10),

father char(10),

primary key ID,

foreign key father references person,

foreign key mother references person)

 How to insert a tuple without causing constraint violation ?

 insert father and mother of a person before inserting person

 OR, set father and mother to null initially, update after

inserting all persons (not possible if father and mother

attributes declared to be not null)

 OR defer constraint checking (next slide)

Transaction

• Sequence of operations treated as a

“single unit”

– Either all happen, or none do

• Various syntaxes

– SQL:1999 : begin atomic … end

– Oracle: set transaction … commit

• Default in most DBMSs: each statement

is a transaction

©Jan-16 Christopher W. Clifton 820

Oracle Syntax

• Starting a transaction:

– commit; -- End previous transaction

– set transaction; -- Start the new transaction

– set constraint all deferred; -- Check at commit

– <statements>

– commit; -- End the transaction

• Can rollback instead of commit

– As if the transaction never happened

Fall 2016 Chris Clifton - CS34800 17

Second goal of transactions:

Sequence of Operations

• Update should complete entirely

– update stipend set stipend = stipend*1.03;

– What if it gets halfway and the machine
crashes?

• What about multiple operations?

– Withdraw x from Account1

– Deposit x into Account2

• Simultaneous operations?

– Print paychecks while stipend being updated

10/21/2016 Chris Clifton - CS34800 19

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan14.20Database System Concepts - 6th Edition

Concurrent Executions

 Multiple transactions are allowed to run concurrently in the

system. Advantages are:

 Increased processor and disk utilization, leading to

better transaction throughput

 E.g. one transaction can be using the CPU while

another is reading from or writing to the disk

 Reduced average response time for transactions: short

transactions need not wait behind long ones.

 Concurrency control schemes – mechanisms to achieve

isolation

 That is, to control the interaction among the concurrent

transactions in order to prevent them from destroying the

consistency of the database

Example

• Consider two transactions:

• There is no guarantee that T1 will execute before
T2 or vice-versa, if both are submitted together.

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.01*A, B=1.01*B END

©Jan-16 Christopher W. Clifton 1020

Example (Contd.)

• Consider a possible interleaving:

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

Chris Clifton - CS34800

Example (Contd.)

• Consider a possible interleaving:

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

Chris Clifton - CS34800

©Jan-16 Christopher W. Clifton 1120

Example (Contd.)

• Consider a possible interleaving:

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

Chris Clifton - CS34800

Example (Contd.)

• Consider a possible interleaving:

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

Chris Clifton - CS34800

©Jan-16 Christopher W. Clifton 1220

Solution: Transaction

• Sequence of operations grouped into a

transaction

– Externally viewed as Atomic: All happens at

once

– DBMS manages so even the programmer

gets this view

• Oracle: Requires additional argument

– set transaction serializable

Fall 2016 Chris Clifton - CS34800 26

ACID properties

Transactions have:

• Atomicity
– All or nothing

• Consistency
– Changes to values maintain integrity

• Isolation
– Transaction occurs as if nothing else happening

• Durability
– Once completed, changes are permanent

Fall 2016 Chris Clifton - CS34800 27

©Jan-16 Christopher W. Clifton 1320

Scheduling Transactions

• Serial schedule: Schedule that does not interleave
the actions of different transactions.

• Equivalent schedules: For any database state, the
effect (on the set of objects in the database) of
executing the first schedule is identical to the
effect of executing the second schedule.

• Serializable schedule: A schedule that is
equivalent to some serial execution of the
transactions.

(If each transaction preserves consistency, every
serializable schedule preserves consistency.)

Chris Clifton - CS34800

CS34800

Information Systems

Transactions, Views

Prof. Chris Clifton

21 October 2016

©Jan-16 Christopher W. Clifton 1420

Anomalies with Interleaved

Execution
• Reading Uncommitted Data (WR Conflicts,

“dirty reads”):

• Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Chris Clifton - CS34800

Anomalies (Continued)

• Overwriting Uncommitted Data (WW

Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Chris Clifton - CS34800

©Jan-16 Christopher W. Clifton 1520

Example:

T1: Read(A) T2: Read(A)

A A+100 A A2

Write(A) Write(A)

Read(B) Read(B)

B B+100 B B2

Write(B) Write(B)

Constraint: A=B

Fall 2016 Chris Clifton - CS34800 35

Schedule A

T1 T2

Read(A); A A+100

Write(A);

Read(B); B B+100;

Write(B);

Read(A);A A2;

Write(A);

Read(B);B B2;

Write(B);

A B

25 25

125

125

250

250

250 250

Chris Clifton - CS34800

©Jan-16 Christopher W. Clifton 1620

Schedule B

T1 T2

Read(A);A A2;

Write(A);

Read(B);B B2;

Write(B);

Read(A); A A+100

Write(A);

Read(B); B B+100;

Write(B);

A B

25 25

50

50

150

150

150 150

Chris Clifton - CS34800

Schedule C

T1 T2

Read(A); A A+100

Write(A);

Read(A);A A2;

Write(A);

Read(B); B B+100;

Write(B);

Read(B);B B2;

Write(B);

A B

25 25

125

250

125

250

250 250

Chris Clifton - CS34800

©Jan-16 Christopher W. Clifton 1720

Schedule D

T1 T2

Read(A); A A+100

Write(A);

Read(A);A A2;

Write(A);

Read(B);B B2;

Write(B);

Read(B); B B+100;

Write(B);

A B

25 25

125

250

50

150

250 150

Chris Clifton - CS34800

Schedule E

T1 T2’

Read(A); A A+100

Write(A);

Read(A);A A1;

Write(A);

Read(B);B B1;

Write(B);

Read(B); B B+100;

Write(B);

A B

25 25

125

125

25

125

125 125

Same as Schedule D

but with new T2’

Chris Clifton - CS34800

©Jan-16 Christopher W. Clifton 1820

Deadlocks

• Deadlock: Cycle of transactions waiting for

locks to be released by each other.

• Two ways of dealing with deadlocks:

– Deadlock prevention

– Deadlock detection

Chris Clifton - CS34800

Logging and Recovery

• The following actions are recorded in the log:
– Ti writes an object: the old value and the new value.

• Log record must go to disk before the changed page!

– Ti commits/aborts: a log record indicating this action.

• Log records are chained together by Xact id, so
it’s easy to undo a specific Xact.

• Log is often duplexed and archived on stable
storage.

• All log related activities (and in fact, all CC related
activities such as lock/unlock, dealing with
deadlocks etc.) are handled transparently by the
DBMS.

Chris Clifton - CS34800

©Jan-16 Christopher W. Clifton 1920

Recovering From a Crash

There are 3 phases in the Aries recovery algorithm:

• Analysis: Scan the log forward (from the most recent
checkpoint) to identify all Xacts that were active, and all dirty
pages in the buffer pool at the time of the crash.

• Redo: Redoes all updates to dirty pages in the buffer pool, as
needed, to ensure that all logged updates are in fact carried
out and written to disk.

• Undo: The writes of all Xacts that were active at the crash
are undone (by restoring the before value of the update,
which is in the log record for the update), working backwards
in the log. (Some care must be taken to handle the case of a
crash occurring during the recovery process!)

Chris Clifton - CS34800

©Silberschatz, Korth and Sudarshan14.58Database System Concepts - 6th Edition

Transaction State

 Active – the initial state; the transaction stays in this state while it is

executing

 Partially committed – after the final statement has been executed.

 Failed -- after the discovery that normal execution can no longer

proceed.

 Aborted – after the transaction has been rolled back and the

database restored to its state prior to the start of the transaction.

Two options after it has been aborted:

 Restart the transaction

 can be done only if no internal logical error

 Kill the transaction

 Committed – after successful completion.

©Jan-16 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan14.59Database System Concepts - 6th Edition

Transaction State (Cont.)

