
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Course Review

Prof. Chris Clifton

7 December 2016

1

Course Outline

• Relational Databases
1. Relational model

overview

2. Formal definitions,
relational operations

3. Query: SQL

• Database Design
4. Entity-Relationship Model

5. Relational Design

6. Database Normalization

7. Object Databases

8. XML databases

• Integrity and
Consistency
9. Transactions

10. Concurrency

11. Constraints

• Advanced Topics
12. Big Data:

MapReduce,
Hadoop, Spark

13. Data Analysis / Data
Mining

14. Information Retrieval

©Jan-16 Christopher W. Clifton 220

What is a Database?

• Collection of data, used to represent the information of interest to
one or more applications in a given organization
– Usually large

– Organized for rapid search and retrieval

• Database Management System (DBMS):
Tool to ease construction of databases
– (Vendor) definition of database: Collection of data managed by a

DBMS

• Desirable Properties:
– Persistent Storage

A File System does this

– Query Interface
Information retrieval system

– Transaction Management

Goals of a DBMS

Enhances the accessibility of

Data data, reduces redundancies

Integration and inconsistencies

Simplifies the development of

Data new applications, and the

Independency maintainance of existing

applications

Centralized Assures data quality,

Data Control confidentiality, and integrity

©Jan-16 Christopher W. Clifton 320

Services provided by a DBMS

Service Description

Data definition To specify the data to be stored

Data manipulation
To access data, to insert new data, to modify and delete

existing data

Semantic integrity To prevent the storage of incorrect data

Storage structures
To represent in secondary storage the data model

constructs, to store efficienty store and retrieve data

Query optimization To determine the most efficient strategy for data access

Access control To protect data from unauthorized accesses

Recovery To prevent data inconsistency in case of errors and failures

Data dictionary
To determine the data stored in a database and access

their definitions

Data Models

• A data model is a “conceptual tool”, or

formalism, that includes three fundamental

components:

– One or more data structures.

– A notation to specify the data through the data

structures of the model.

– A set of operations for managing data; these

operations are defined in terms of the data

structures of the model.

©Jan-16 Christopher W. Clifton 420

Data Models

• Each data model must answer two fundamental
questions:

(a) how to represent the entities and their attributes

(b) how to represent the relationships

(a)Almost all models use structures such as the
record; each component in a record represents
an attribute

(b)Data models widely in this respect; relationships
can be represented as:
– specific structures, values, pointers (logical or

physical)

©Silberschatz, Korth and Sudarshan1.10Database System Concepts - 6th Edition

Levels of Abstraction

 Physical level: describes how a record (e.g., instructor) is stored.

 Logical level: describes data stored in database, and the relationships

among the data.

type instructor = record

ID : string;

name : string;

dept_name : string;

salary : integer;

end;

 View level: application programs hide details of data types. Views can

also hide information (such as an employee’s salary) for security

purposes.

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan1.11Database System Concepts - 6th Edition

Instances and Schemas

 Similar to types and variables in programming languages

 Logical Schema – the overall logical structure of the database

 Example: The database consists of information about a set of

customers and accounts in a bank and the relationship between them

 Analogous to type information of a variable in a program

 Physical schema– the overall physical structure of the database

 Instance – the actual content of the database at a particular point in time

 Analogous to the value of a variable

 Physical Data Independence – the ability to modify the physical schema

without changing the logical schema

 Applications depend on the logical schema

 In general, the interfaces between the various levels and components

should be well defined so that changes in some parts do not seriously

influence others.

©Silberschatz, Korth and Sudarshan1.13Database System Concepts - 6th Edition

SQL

 The most widely used commercial language

 SQL is NOT a Turing machine equivalent language

 To be able to compute complex functions SQL is usually

embedded in some higher-level language

 Application programs generally access databases through one of

 Language extensions to allow embedded SQL

 Application program interface (e.g., ODBC/JDBC) which allow

SQL queries to be sent to a database

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan1.14Database System Concepts - 6th Edition

Data Definition Language (DDL)

 Specification notation for defining the database schema

Example: create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

 DDL compiler generates a set of table templates stored in a data dictionary

 Data dictionary contains metadata (i.e., data about data)

 Database schema

 Integrity constraints

 Primary key (ID uniquely identifies instructors)

 Authorization

 Who can access what

©Silberschatz, Korth and Sudarshan1.15Database System Concepts - 6th Edition

Data Manipulation Language (DML)

 Language for accessing and manipulating the data organized

by the appropriate data model

 DML also known as query language

 Two classes of languages

 Pure – used for proving properties about computational

power and for optimization

 Relational Algebra

 Tuple relational calculus

 Domain relational calculus

 Commercial – used in commercial systems

 SQL is the most widely used commercial language

©Jan-16 Christopher W. Clifton 720

Relational Algebra

Mathematical view of SQL queries

• Formal view of what we’ve seen in SQL

– Selection (where clause)

– Projection (select clause)

• Cartesian Product

• Join

• Set operations

• Aggregation

Relational Algebra
A good way to think about queries

 SELECT

π PROJECT

X CARTESIAN PRODUCT

U UNION FUNDAMENTAL

– SET-DIFFERENCE

 SET-INTERSECTION BINARY


THETA-JOIN CAN BE DEFINED

NATURAL JOIN IN TERMS OF

÷ DIVISION or QUOTIENT FUNDAMENTAL OPS

• Properties:
– Limited expressive power (subset of possible queries), but rich enough to be useful

– Closed (input is relation, output is relation)

– Finite (result always defined)

– Easy to automatically determine how to efficiently process

UNARY

©Jan-16 Christopher W. Clifton 820

Additional operators

• Grouping: L(R)

– L is a list of elements that are either
• Individual (grouping) attributes, or an

• Aggregate (A), where  is an aggregation operator
and A the attribute to which it is applied

• Aggregation operators
– Sum, Average, Count, Min, and Max

– Return a single row for projection, a row for each
group with group-by

• Renaming:  x (E1), x is the name for E1

18

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 6th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for

some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

 The predicate is null can be used to check for null values.

 Example: Find all instructors whose salary is null.

select name

from instructor

where salary is null

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 6th Edition

Null Values and Aggregates

 Total all salaries

select sum (salary)

from instructor

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null values

on the aggregated attributes

 What if collection has only null values?

 count returns 0

 all other aggregates return null

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 6th Edition

Accessing SQL From a Programming Language

 API (application-program interface) for a program to interact with a

database server

 Application makes calls to

 Connect with the database server

 Send SQL commands to the database server

 Fetch tuples of result one-by-one into program variables

 Various tools:

 JDBC (Java Database Connectivity) works with Java

 ODBC (Open Database Connectivity) works with C, C++, C#,

and Visual Basic. Other API’s such as ADO.NET sit on top of

ODBC

 Embedded SQL

©Jan-16 Christopher W. Clifton 1020

Key concept:

Cursor

• Query returns a table

– Could be viewed as a “Set” data type

– Not all programming languages deal with this

• Instead, idea of a cursor to iterate over table

– Access one row of result at a time

– Typically used in a loop construct in the language

• Query processor “understands” cursor

– Can start making results available before query

completes

©Silberschatz, Korth and Sudarshan3.24Database System Concepts - 6th Edition

JDBC

 JDBC is a Java API for communicating with database systems

supporting SQL.

 JDBC supports a variety of features for querying and updating data,

and for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of

relation attributes.

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

©Jan-16 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan3.25Database System Concepts - 6th Edition

ODBC

 Open DataBase Connectivity (ODBC) standard

 standard for application program to communicate with a

database server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 6th Edition

Functions and Procedures

 SQL:1999 supports functions and procedures

 Functions/procedures can be written in SQL itself, or in an external

programming language (e.g., C, Java).

 Functions written in an external languages are particularly useful

with specialized data types such as images and geometric objects.

 Example: functions to check if polygons overlap, or to compare

images for similarity.

 Some database systems support table-valued functions, which

can return a relation as a result.

 Think of this as a (very complex) view

 SQL:1999 also supports a rich set of imperative constructs, including

 Loops, if-then-else, assignment

 Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999.

©Jan-16 Christopher W. Clifton 1220

Students

Entity/Relationship Model

Diagrams to represent designs.

• Entity like object, = “thing.”

• Entity set like class = set of “similar”

entities/objects.

• Attribute = property of entities in an entity set,

similar to fields of a struct.

• In diagrams, entity set  rectangle;

attribute  oval. ID name phone

height

33

Relationships

• Connect two or more entity sets.

• Represented by diamonds.

Students CoursesTaking

©Jan-16 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan3.34Database System Concepts - 6th Edition

Summary of Symbols Used in E-R Notation

©Silberschatz, Korth and Sudarshan3.35Database System Concepts - 6th Edition

Symbols Used in E-R Notation (Cont.)

©Jan-16 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan1.36Database System Concepts - 6th Edition

E-R Diagram for a University Enterprise

Relational Design

Simplest approach (not always best): convert each
E.S. to a relation and each relationship to a
relation.

Entity Set  Relation
E.S. attributes become relational attributes.

Becomes:
Instructor(name, course)

Fall 2016 CS34800 37

Instructor

name course

©Jan-16 Christopher W. Clifton 1520

Relational Design

• Instructor(ID number(10) primary key,
Name varchar(40),
Salary number(6))

• Dept(dept_name varchar(20) primary key,
building varchar(30),
budget number(8))

• Works_in(ID references Instructor(ID),
dept_name references Dept(dept_name))

Fall 2016 Chris Clifton - CS34800 38

Instructor

ID

Name

Salary

Dept

dept_name

building

budget

Works

In

Fall 2016 Chris Clifton - CS34800 39

Keys of Relations

K is a key for relation R if:

1. K  all attributes of R. (Uniqueness)

2. For no proper subset of K is (1) true. (Minimality)

• If K at least satisfies (1), then K is a superkey.

Conventions
• Pick one key; underline key attributes in the relation

schema.

• X, etc., represent sets of attributes; A etc., represent
single attributes.

©Jan-16 Christopher W. Clifton 1620

Relational Design

• Instructor(ID number(10) primary key,
Name varchar(40),
Salary number(6))

• Dept(dept_name varchar(20) primary key,
building varchar(30),
budget number(8))

• Works_in(ID references Instructor(ID),
dept_name references Dept(dept_name))

Fall 2016 Chris Clifton - CS34800 40

Instructor

ID

Name

Salary

Dept

dept_name

building

budget

Works

In

Key for Works_in?

A. ID

B. dept_name

C. both

D. neither

Lossless Join

• Goal: All legal values can be stored in

relations

– Recover originals through join

• Formally: X, Y is a lossless join

decomposition of R w.r.t. F if rR

satisfying dependencies in F,

πX(r) πY(r) = r

Chris Clifton - CS34800Fall 2016 41

©Jan-16 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 6th Edition

A Lossy Decomposition

Fall 2016 Chris Clifton - CS34800 43

Functional Dependencies

X  A = assertion about a relation R that
whenever two tuples agree on all the
attributes of X, then they must also agree
on attribute A

Why do we care?

Knowing functional dependencies provides a
formal mechanism to divide up relations
(normalization)

Saves space

Prevents storing data that violates dependencies

©Jan-16 Christopher W. Clifton 1820

Armstrong’s Axioms

• Armstrong’s Axioms:
– if   , then    (reflexivity)

– if   , then      (augmentation)

– if   , and   , then    (transitivity)

• Owner pet_name age  species
species  vaccination

• Applying transitivity gives:
A. pet_name age  species

B. Owner vaccination

C. Vaccination  species

D. Owner pet_name age  vaccination

E. Transitivity can’t be applied to these rules

Fall 2016 Chris Clifton - CS34800 46

Functional Dependencies (FD’s)

and Many-One Relationships

• Consider R(A1,…, An) and X is a key

then X  Y for any attributes Y in A1,…, An

even if they overlap with X. Why?

• Suppose R is used to represent a many  one

relationship:

E1 entity set  E2 entity set

where X key for E1, Y key for E2,

Then, X  Y holds,

And Y  X does not hold unless the relationship is one-

one.

• What about many-many relationships?

©Jan-16 Christopher W. Clifton 1920

©Silberschatz, Korth and Sudarshan1.47Database System Concepts - 6th Edition

Closure of a Set of Functional Dependencies

 Given a set F of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

 For example: If A  B and B  C, then we can infer that A  C

 The set of all functional dependencies logically implied by F is the

closure of F.

 We denote the closure of F by F+.

 F+ is a superset of F.

Algorithm

Define Y+ = closure of Y = set of attributes
functionally determined by Y:

• Basis: Y+:=Y.

• Induction: If X  Y+, and X  A is a given FD,
then add A to Y+.

• End when Y+ cannot be changed.

X
A

Y new Y+ +

Fall 2016 Chris Clifton - CS34800 50

©Jan-16 Christopher W. Clifton 2020

Canonical Cover

• Sets of functional dependencies may have redundant
dependencies that can be inferred from the others
– For example: A  C is redundant in: {A  B, B  C,

A C}

– Parts of a functional dependency may be redundant
• E.g.: on RHS: {A  B, B  C, A  CD} can be simplified to

{A  B, B  C, A  D}

• E.g.: on LHS: {A  B, B  C, AC  D} can be simplified to
{A  B, B  C, A  D}

• Intuitively, a canonical cover of F is a “minimal” set of
functional dependencies equivalent to F, having no
redundant dependencies or redundant parts of
dependencies

©Silberschatz, Korth and Sudarshan1.54Database System Concepts - 6th Edition

Computing a Canonical Cover

 R = (A, B, C)

F = {A  BC

B  C

A  B

AB  C}

 Combine A  BC and A  B into A  BC

 Set is now {A  BC, B  C, AB  C}

 A is extraneous in AB  C

 Check if the result of deleting A from AB  C is implied by the other

dependencies

 Yes: in fact, B  C is already present!

 Set is now {A  BC, B  C}

 C is extraneous in A  BC

 Check if A  C is logically implied by A  B and the other dependencies

 Yes: using transitivity on A  B and B  C.

– Can use attribute closure of A in more complex cases

 The canonical cover is: A  B

B  C

©Jan-16 Christopher W. Clifton 2120

CS34800

Information Systems

Course Review

Prof. Chris Clifton

9 December 2016

57

Normalization

• Let R be a relation scheme with a set F of
functional dependencies.

• Decide whether a relation scheme R is in “good”
form.

• In the case that a relation scheme R is not in
“good” form, decompose it into a set of relation
scheme {R1, R2, ..., Rn} such that

– each relation scheme is in good form

– the decomposition is a lossless-join decomposition

– Preferably, the decomposition should be dependency
preserving.

©Jan-16 Christopher W. Clifton 2220

BCNF

Goal = BCNF = Boyce-Codd Normal Form =
all FD’s follow from the fact “key  everything.”
• Formally, R is in BCNF if for every nontrivial FD for

R, say X  A, then X is a superkey.
– “Nontrivial” = right-side attribute not in left side.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one occurrence
of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact is lost
when tuple is deleted.

Fall 2016 Chris Clifton - CS34800 59

Algorithm for BCNF

1. Compute X+.
– Cannot be all attributes – why?

2. Decompose R into X+ and (R–X+)  X.

3. Find the FD’s for the decomposed relations.
– Project the FD’s from F = calculate all consequents of

F that involve only attributes from X+ or only from
(RX+)  X.

R X+X

Fall 2016 Chris Clifton - CS34800 61

©Jan-16 Christopher W. Clifton 2320

©Silberschatz, Korth and Sudarshan1.62Database System Concepts - 6th Edition

Third Normal Form

 A relation schema R is in third normal form (3NF) if for all:

   in F+

at least one of the following holds:

    is trivial (i.e.,   )

  is a superkey for R

 Each attribute A in  –  is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two

conditions above must hold).

 Third condition is a minimal relaxation of BCNF to ensure dependency

preservation (will see why later).

3NF Synthesis

• Given a canonical cover FC for F

• Schema S = 

•  A→BFc

– If there is no Ri  S such that AB  Ri

• S = S + AB

• If there is no Ri  S containing a candidate

key for R

– S = S + (any candidate key for R)

Chris Clifton - CS34800Fall 2016 64

©Jan-16 Christopher W. Clifton 2420

Fall 2016 Chris Clifton - CS34800 65

Multivalued Dependencies

The multivalued dependency X  Y holds in

a relation R if whenever we have two tuples

of R that agree in all the attributes of X, then

we can swap their Y components and get two

new tuples that are also in R.

X Y others

Example: ID  name

MVD Rules

1.Every FD is an MVD.

– Because if X Y, then swapping Y’s between

tuples that agree on X doesn’t create new

tuples.

– Example: name  addr.

2.Complementation: if X  Y, then X 

Z, where Z is all attributes not in X or Y.

– Example: since ID  name addr

name addr  ID

Fall 2016 Chris Clifton - CS34800 66

©Jan-16 Christopher W. Clifton 2520

4NF Decomposition

• Let schema S = R,

D+ be the closure of the functional and

multivalued dependencies

• While  Ri  S not in 4NF w.r.t. D+

– Choose a nontrivial multivalued dependency

A B that holds on Ri, where A  Ri  D+,

and A  B = 

– S = (S – Ri)  (Ri-B)  (A,B)

Chris Clifton - CS34800Fall 2016 67

Data Modification

• insert into student

values (’3003’, ’Green’, ’Finance’, null);

• delete from instructor

where dept_name= ’Finance’;

• update instructor

set salary = salary * 1.03

where salary > 100000;

68

©Jan-16 Christopher W. Clifton 2620

©Silberschatz, Korth and Sudarshan1.69Database System Concepts - 6th Edition

Integrity Constraints on a Single Relation

 not null

 primary key

 unique

 check (P), where P is a predicate

XML

• XML: Extensible Markup Language
– Developed by WWW Consortium as more flexible

version of HTML

– Derived (as with HTML) from SGML (Standard
Generalized Markup Language)

• Goal: Add structure to document
– Describe content, not presentation

• Key idea: tags
– <title>Introduction to XML</title>

– <list><item>XML: Exten… </item>
<item>…</list>

Fall 2016 Chris Clifton - CS34800 70

©Jan-16 Christopher W. Clifton 2720

©Silberschatz, Korth and Sudarshan1.71Database System Concepts - 6th Edition

Document Type Definition (DTD)

 The type of an XML document can be specified using a DTD

 DTD constraints structure of XML data

 What elements can occur

 What attributes can/must an element have

 What subelements can/must occur inside each element, and how

many times.

 DTD does not constrain data types

 All values represented as strings in XML

 DTD syntax

 <!ELEMENT element (subelements-specification) >

 <!ATTLIST element (attributes) >

©Silberschatz, Korth and Sudarshan1.72Database System Concepts - 6th Edition

University DTD with Attributes

 University DTD with ID and IDREF attribute types.

<!DOCTYPE university-3 [

<!ELEMENT university ((department|course|instructor)+)>

<!ELEMENT department (building, budget)>

<!ATTLIST department

dept_name ID #REQUIRED >

<!ELEMENT course (title, credits)>

<!ATTLIST course

course_id ID #REQUIRED

dept_name IDREF #REQUIRED

instructors IDREFS #IMPLIED >

<!ELEMENT instructor (name, salary)>

<!ATTLIST instructor

IID ID #REQUIRED

dept_name IDREF #REQUIRED >

· · · declarations for title, credits, building,

budget, name and salary · · ·

]>

©Jan-16 Christopher W. Clifton 2820

©Silberschatz, Korth and Sudarshan3.73Database System Concepts - 6th Edition

XML data with ID and IDREF attributes

<university-3>

<department dept name=“Comp. Sci.”>

<building> Taylor </building>

<budget> 100000 </budget>

</department>

<department dept name=“Biology”>

<building> Watson </building>

<budget> 90000 </budget>

</department>

<course course id=“CS-101” dept name=“Comp. Sci”

instructors=“10101 83821”>

<title> Intro. to Computer Science </title>

<credits> 4 </credits>

</course>

….

<instructor IID=“10101” dept name=“Comp. Sci.”>

<name> Srinivasan </name>

<salary> 65000 </salary>

</instructor>

….

</university-3>

©Silberschatz, Korth and Sudarshan1.74Database System Concepts - 6th Edition

XML Schema

 XML Schema is a more sophisticated schema language which

addresses the drawbacks of DTDs. Supports

 Typing of values

 E.g. integer, string, etc

 Also, constraints on min/max values

 User-defined, comlex types

 Many more features, including

 uniqueness and foreign key constraints, inheritance

 XML Schema is itself specified in XML syntax, unlike DTDs

 More-standard representation, but verbose

 XML Scheme is integrated with namespaces

 BUT: XML Schema is significantly more complicated than DTDs.

©Jan-16 Christopher W. Clifton 2920

©Silberschatz, Korth and Sudarshan3.75Database System Concepts - 6th Edition

XML Schema Version of Univ. DTD

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

<xs:element name=“university” type=“universityType” />

<xs:element name=“department”>

<xs:complexType>

<xs:sequence>

<xs:element name=“dept name” type=“xs:string”/>

<xs:element name=“building” type=“xs:string”/>

<xs:element name=“budget” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

….

<xs:element name=“instructor”>

<xs:complexType>

<xs:sequence>

<xs:element name=“IID” type=“xs:string”/>

<xs:element name=“name” type=“xs:string”/>

<xs:element name=“dept name” type=“xs:string”/>

<xs:element name=“salary” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

… Contd.

Manipulating XML Data

• XQuery

– Based on sequences, not sets

– Describe path within document (XPath)

– Variables, wildcards, etc. within path that are

matched

• Parser-based access (E.g., Java API to XML)

– Designed for string representation of document

– DOM: Tree traversal

– SAX: Streaming through document

©Jan-16 Christopher W. Clifton 3020

©Silberschatz, Korth and Sudarshan1.77Database System Concepts - 6th Edition

XPath

 XPath is used to address (select) parts of documents using

path expressions

 A path expression is a sequence of steps separated by “/”

 Think of file names in a directory hierarchy

 Result of path expression: set of values that along with their

containing elements/attributes match the specified path

 E.g. /university-3/instructor/name evaluated on the university-3

data we saw earlier returns

<name>Srinivasan</name>

<name>Brandt</name>

 E.g. /university-3/instructor/name/text()

returns the same names, but without the enclosing tags

©Silberschatz, Korth and Sudarshan1.78Database System Concepts - 6th Edition

XQuery

 XQuery is a general purpose query language for XML data

 Currently being standardized by the World Wide Web Consortium
(W3C)

 The textbook description is based on a January 2005 draft of the
standard. The final version may differ, but major features likely to
stay unchanged.

 XQuery is derived from the Quilt query language, which itself borrows
from SQL, XQL and XML-QL

 XQuery uses a
for … let … where … order by …result …

syntax
for  SQL from
where SQL where
order by  SQL order by

result  SQL select
let allows temporary variables, and has no equivalent in SQL

©Jan-16 Christopher W. Clifton 3120

Object-Oriented Databases

• Goal: Provide same benefits as object-

oriented programming

– Abstraction

– Reuse

– Natural data modeling

• A number of commercial systems

– Gemstone (1986)

– Informix, ObjectDB, O2, …

Fall 2016 Chris Clifton - CS34800 79

©Silberschatz, Korth and Sudarshan1.80Database System Concepts - 6th Edition

Object-Relational Data Models

 Extend the relational data model by including object orientation and

constructs to deal with added data types.

 Allow attributes of tuples to have complex types, including non-atomic

values such as nested relations.

 Preserve relational foundations, in particular the declarative access to

data, while extending modeling power.

 Upward compatibility with existing relational languages.

©Jan-16 Christopher W. Clifton 3220

©Silberschatz, Korth and Sudarshan1.81Database System Concepts - 6th Edition

Complex Types and SQL

 Extensions introduced in SQL:1999 to support complex types:

 Collection and large object types

 Nested relations are an example of collection types

 Structured types

 Nested record structures like composite attributes

 Inheritance

 Object orientation

 Including object identifiers and references

 Commercial databases may vary from the standard

 But some features are present in each of the major commercial
database systems

 Read the manual of your database system to see what it
supports

Transaction

• Sequence of operations treated as a
“single unit”

– Either all happen, or none do

• Various syntaxes

– SQL:1999 : begin atomic … end

– Oracle: set transaction … commit

• Default in most DBMSs: each statement
is a transaction

• Also “Rollback” (undo before commit)

©Jan-16 Christopher W. Clifton 3320

Second goal of transactions:

Sequence of Operations

• Update should complete entirely

– update stipend set stipend = stipend*1.03;

– What if it gets halfway and the machine
crashes?

• What about multiple operations?

– Withdraw x from Account1

– Deposit x into Account2

• Simultaneous operations?

– Print paychecks while stipend being updated

12/9/2016 Chris Clifton - CS34800 83

ACID properties

Transactions have:

• Atomicity
– All or nothing

• Consistency
– Changes to values maintain integrity

• Isolation
– Transaction occurs as if nothing else happening

• Durability
– Once completed, changes are permanent

Fall 2016 Chris Clifton - CS34800 84

©Jan-16 Christopher W. Clifton 3420

Scheduling Transactions

• Serial schedule: Schedule that does not interleave
the actions of different transactions.

• Equivalent schedules: For any database state, the
effect (on the set of objects in the database) of
executing the first schedule is identical to the
effect of executing the second schedule.

• Serializable schedule: A schedule that is
equivalent to some serial execution of the
transactions.

(If each transaction preserves consistency, every
serializable schedule preserves consistency.)

Chris Clifton - CS34800

Example

• Consider two transactions:

• There is no guarantee that T1 will execute before
T2 or vice-versa, if both are submitted together.

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.01*A, B=1.01*B END

©Jan-16 Christopher W. Clifton 3520

Example (Contd.)

• Consider a possible interleaving:

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

Chris Clifton - CS34800

Example (Contd.)

• Consider a possible interleaving:

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

Chris Clifton - CS34800

©Jan-16 Christopher W. Clifton 3620

Example (Contd.)

• Consider a possible interleaving:

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

Chris Clifton - CS34800

Example (Contd.)

• Consider a possible interleaving:

• Assume A=100, B=100 at start. Result:

A. A = 202, B = 0

B. A = 201, B = 1

C. A = 202, B = 1

D. A = 201, B = 0

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

Chris Clifton - CS34800

©Jan-16 Christopher W. Clifton 3720

Views

• Start with tables

• Create “view” for convenience

– create view courseList as

select i.Career, Last, First, Address, Course

from instructors I, courses c

where i.Career = c.Career

Fall 2016 Chris Clifton - CS34800 91

Career Last First Address Course

clifton Clifton Chris LWSN 2142F CS34800

clifton Clifton Chris LWSN 2142F CS54100

Career Last First Address

clifton Clifton Chris LWSN 2142F

Career Course

clifton CS34800

clifton CS54100

View: Semantics

• Contents of view are current at the time it
is used

– If base tables are updated, view is updated

• Equivalent to replacing the view with a
subquery
select * from courseList where course=‘CS34800’ ≡
select * from

(select i.Career, Last, First, Address, Course
from instructors I, courses c
where i.Career = c.Career)

where course=‘CS34800’

Fall 2016 Chris Clifton - CS34800 92

©Jan-16 Christopher W. Clifton 3820

Update issue

• Insert into courseList values

(‘clifton’, ‘Clifton’, ‘Chris’, ‘LWSN 2142F’,

‘CS54701’);

Fall 2016 Chris Clifton - CS34800 93

Career Last First Address Course

clifton Clifton Chris LWSN 2142F CS34800

clifton Clifton Chris LWSN 2142F CS54100

Career Last First Address

clifton Clifton Chris LWSN 2142F

Career Course

clifton CS34800

clifton CS54100

Career Last First Address

clifton Clifton Chris LWSN 2142F

clifton Clifton Chris LWSN 2142F

Career Course

clifton CS34800

clifton CS54100

clifton CS54701

SQL Access Control

• grant select on <table> to <user>;

– grant insert, delete, update

– with grant option

• Allows “passing on” privileges

• <table> can also be a view

– But some caveats on updating/insert/delete

Fall 2016 Chris Clifton - CS34800 94

©Jan-16 Christopher W. Clifton 3920

©Silberschatz, Korth and Sudarshan1.95Database System Concepts - 6th Edition

Triggers

 A trigger is a statement that is executed automatically by the system

as a side effect of a modification to the database.

 To design a trigger mechanism, we must:

 Specify the conditions under which the trigger is to be executed.

 Specify the actions to be taken when the trigger executes.

 Triggers introduced to SQL standard in SQL:1999, but supported even

earlier using non-standard syntax by most databases.

 Syntax illustrated here may not work exactly on your database

system; check the system manuals

©Silberschatz, Korth and Sudarshan1.96Database System Concepts - 6th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

 For example, after update of takes on grade

 Values of attributes before and after an update can be referenced

 referencing old row as : for deletes and updates

 referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as extra
constraints. For example, convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ‘ ‘)
begin atomic

set nrow.grade = null;
end;

©Jan-16 Christopher W. Clifton 4020

©Silberschatz, Korth and Sudarshan1.97Database System Concepts - 6th Edition

Trigger to Maintain credits_earned value

 create trigger credits_earned after update of takes on (grade)

referencing new row as nrow

referencing old row as orow

for each row

when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)

begin atomic

update student

set tot_cred= tot_cred +

(select credits

from course

where course.course_id= nrow.course_id)

where student.id = nrow.id;

end;

Indexing and Hashing

• Goal: Faster access to data
– Faster than scanning the whole table

• Search Key: attribute/column for which faster
search enabled
– Not the same as keys for database design

• Index: Tree structure allowing faster search
– Logarithmic time

• Hashing: Group data into “buckets” based on
value of search key
– If all goes well, constant time access

CS34800 98

©Jan-16 Christopher W. Clifton 4120

Creating Indexes

• create index <name> on <relation>
(<attribute_list>)
– create index students_i_name on

students (lastname);

• Can specify type of index

– create bitmap index students_i_id on
students(StudentID);

• Also delete: drop index student_i_name;

• Oracle: Index automatically created for
primary key or unique constraint

Bitmap Index

• Similar in concept to hashing

– Key values represented as bits in a (long)
vector

– Particularly good when few possible key
values

• Supports easy and/or operations in
queries

– lastname = ‘Clifton’ AND salary > $100k

• More expensive to update

CS34800 100

©Jan-16 Christopher W. Clifton 4220

MapReduce Model

• SQL:
select word, count(*) from documents group
by word

• MapReduce:
– function map (String name, String document):

for each word w in document: emit (w, 1)

– function reduce (String word, Iterator partCounts):
sum = 0
for each pc in PartCounts:
sum += pc

emit (word, sum)

CS34800 101

AD-hoc IR: Basic Process

Information

Need

Retrieval Model

Representation

Query Indexed Objects

Retrieved Objects

Evaluation/Feedback

Representation

©Jan-16 Christopher W. Clifton 4320

Text Representation: Word

Stemming

Porter Stemmer

 Based on a pattern of vowel-consonant sequence

 [C](VC)m[V], m is an integer

 Rules are divided into steps and examined in sequence

 Step 1a: ies i; s ; …..

cares care

 Step 1b: if m>0 eed ee

agreed agree

 ….. Step 5a, Step 5b

 Pretty aggressive:

 nativity native

Text Representation: Word

Stemming
Examples of Stemming:

 Original Text:

Information retrieval deals with the representation, storage,

organization of, and access to information items

 Porter Stemmer (Stopwords removed):

Online example:
http://facweb.cs.depaul.edu/mobasher/classes/csc575/porter.html

Inform retrieve deal represent storag organ access inform

item

http://facweb.cs.depaul.edu/mobasher/classes/csc575/porter.html

©Jan-16 Christopher W. Clifton 4420

Retrieval Models

Vector space model vs. Boolean model

• Boolean models

– Query: a Boolean expression that a document
must satisfy

– Retrieval: Deductive inference

• Vector space model

– Query: viewed as a short document in a
vector space

– Retrieval: Find similar vectors/objects

Bag of Words

(aka Vector Space Model)

The simplest text representation: “bag of words”

 Query/document: a bag that contains words

 Order among words is ignored

 Word count kept

steroids

centrioles

bodies

steroids

exchange

nontarget

precise

substance growth

two
step

…….

…….

……

…….

©Jan-16 Christopher W. Clifton 4520

Retrieval Models:

Vector Space Model
Give two vectors of query and document

 query as

 document as

 calculate the similarity

1 2(, ,...,)nq q q q

1 2(, ,...,)j j j jnd d d d

Cosine similarity: Angle between vectors

1 ,1 2 ,2 , 1 ,1 2 ,2 ,

2 2 2 2

1 1

cos((,))

... ...

... ...

j

j j j j j n j j j j n

n j jn

q d

q d q d q d q d q d q dq d

q d q d q q d d



     
  

   

(,)jq d

q

jd

(,) cos((,))j jsim q d q d

Evaluation Criteria

Relevant docs retrieved
Precision=

Retrieved docs

Relevant docs retrieved
Recall=

Relevant docs

 Effectiveness

 Favor returned document ranked lists with more relevant documents

at the top

 Objective measures

Recall and Precision

Mean-average precision

Rank based precision

For documents in a subset of a

ranked lists, if we know the truth

©Jan-16 Christopher W. Clifton 4620

CS34800 109

• OLTP (on-line transaction processing)
– Major task of traditional relational DBMS

– Day-to-day operations: purchasing, inventory, banking,
manufacturing, payroll, registration, accounting, etc.

• OLAP (on-line analytical processing)
– Major task of data warehouse system

– Data analysis and decision making

• Distinct features (OLTP vs. OLAP):
– User and system orientation: customer vs. market

– Data contents: current, detailed vs. historical, consolidated

– Database design: ER + application vs. star + subject

– View: current, local vs. evolutionary, integrated

– Access patterns: update vs. read-only but complex queries

Data Warehouse vs.

Operational DBMS

CS34800 110

Example of Star Schema

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city

state_or_province

country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key

item_name

brand

type

supplier_type

item

branch_key

branch_name

branch_type

branch

©Jan-16 Christopher W. Clifton 4720

CS34800 111

Multidimensional Data

• Sales volume as a function of product,

month, and region

P
ro

d
u

ct

Month

Dimensions: Product, Location, Time

Hierarchical summarization paths

Industry Region Year

Category Country Quarter

Product City Month Week

Office Day

