
Purdue University
Fall 2016
CS 348: Information Systems
Project 4: SQL on Spark
Due: 11:59 pm on November 30, 2016

/**********
* Overview
**********/

This project will show you how to execute SQL queries on Apache Spark.

/**********
* Environment and Setup
**********/

We will use Purdue's OpenStack cluster for this assignment. The master

node for this cluster is 172.18.11.251. You can SSH into the master

node with credentials username:[PurdueID]_ostack,

password:[PurdueID]_ostackpwd. (By PurdueID, we mean the username that

you use to login to MyPurdue, Blackboard, etc.) If you are connecting

from somewhere off campus, you may have to set up a VPN connection

first. Or you can ssh to another node which is visible off campus

(e.g. data.cs.purdue.edu) and then from there ssh to the cluster

Be sure to change your password after you log in.
$ passwd

To see a list of all the nodes in the cluster, run
$ cat /etc/hosts

CAUTION: This cluster is temporary. It will be wiped after the lab is

graded. If you have any codes or results that you wish to save, move

them to permanent storage on another system.

NOTE: This cluster does not mount the CS Department's NFS shared file

system, so your CS home directory is not available.

You will each have your own directory in HDFS where you will have

permissions to read and write data. To view the contents of your

personal HDFS directory (which is initially empty), use:

$ hadoop fs -ls -R /user/[username] | grep -v Trash

You can take a look at common HDFS commands at

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-

common/FileSystemShell.html

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/FileSystemShell.html

/**********
* Dataset
**********/

Movie Lens 1M dataset, taken from GroupLens Research:
http://grouplens.org/datasets/movielens/1m/

Tables:

users.dat (UserID::Gender::Age::Occupation::Zip-code)
movies.dat (MovieID::Title::Genres)
ratings.dat (UserID::MovieID::Rating::Timestamp)

/***********************
* Uploading Files to HDFS
************************/

To pull the data and place it into a directory

$ wget http://files.grouplens.org/datasets/movielens/ml-1m.zip

$ unzip ml-1m.zip

This will place the above listed files into ml-1m directory

NOTE: Some of the titles in movies.dat contain characters that are not

UTF-8. These characters may compromise your results. So, as is often

the case in the real world, we must put our data through a "cleaning"

phase before we query it. Use the following bash command to remove all

non-UTF-8 characters from the movies.dat file before you load it into

HDFS:
$ iconv -f utf-8 -t utf-8 -c movies.dat > tmp.dat; mv tmp.dat

movies.dat;

To upload the data into HDFS, use following steps

1. Create the directory in HDFS to place your data files, <username>

is the username you use to SSH into the openstack cluster

(<purdue_email_id>_ostack)

$ hadoop fs –mkdir /user/<username> {If doesn’t exist already}

$ hadoop fs –mkdir /user/<username>/sparksql

$ hadoop fs –mkdir /user/<username>/sparksql/input

2. Move your data files to the HDFS directory

$ cd ml-1m

$ hadoop fs -put *.dat /user/<username>/sparksql/input

http://grouplens.org/datasets/movielens/1m/

3. Confirm that the files are moved into HDFS

$ hadoop fs -ls -R /user/<username>/sparksql | grep -v Trash

4. After executing your queries, to copy over the files back to local

file system into a directory

$ mkdir –p outputdir

$ cd outputdir

$ hadoop fs –get /user/<username>/sparksql/output/*

5. To remove all created folder and files from HDFS after everything

is done

$ hadoop fs rm –r /user/<username>/*

/***********************
* Spark Environment
************************/

Spark provides APIs for Scala, Java, and Python. For this project we

will use Python.

For an introduction to Spark, take a look at the following links.

http://spark.apache.org/docs/1.6.0/quick-start.html
http://spark.apache.org/docs/1.6.0/programming-guide.html

http://spark.apache.org/docs/1.6.0/sql-programming-guide.html
http://www.slideshare.net/LisaHua/spark-overview-37479609

NOTE: Be mindful of the version number whenever you are searching

online for documentation. The version of Spark installed on the

Openstack cluster is version 1.6.0. Spark is under heavy development,

so if you are looking at documentation for another version there is a

good chance that features will be changed or missing.

Spark provides a Python shell where you can submit commands

interactively. This shell can be very useful when trying to learn the

Spark interface. To start the shell, SSH to the master node and use:

$ pyspark

If you like, you can develop your queries in the shell first, and then

copy your shell commands to a Python script to create a Python job. To

distribute a Python job with Spark, use:

$ spark-submit --master yarn [job.py] [command_line_args]

/**********
* Example
**********/

http://spark.apache.org/docs/1.6.0/quick-start.html
http://spark.apache.org/docs/1.6.0/programming-guide.html
http://spark.apache.org/docs/1.6.0/sql-programming-guide.html
http://www.slideshare.net/LisaHua/spark-overview-37479609

We will provide you with the code to complete one query:
The code is present at

https://www.cs.purdue.edu/homes/clifton/cs348/q1.py

/* Query 1 (example query) */
/* Give the distinct title of each movie that received the rating 1 at

least once. */
SELECT DISTINCT m.title
FROM

movies AS m
JOIN ratings AS r ON m.movieid = r.movieid

WHERE r.rating = 1;
/* output */
101 Dalmatians (1996)

Note that this query requires us to join two tables.
To run the query, copy the file q1.py to your home directory on the

master node and run the following command:

$ spark-submit --master yarn q1.py [input_dir] [output_dir]
e.g.

$ spark-submit –-master yarn q1.py

/user/<username>/sparksql/input /user/<username>/sparksql/output

/**********
* Task
**********/

We ask that you implement the following queries as Spark jobs. For

each query, we demonstrate what a single line of output from your

final job should look like.

/* Query 2 */
/* Give the distinct title and genre of each movie released in 2000

that received the rating 5 at least once. */

[SQL omitted]
/* output */
Almost Famous (2000)::Comedy|Drama

/* Query 3 */
/* For each occupation, compute the number of users with that

occupation. */

SELECT u.occupation, count(u.occupation) AS cnt
FROM users AS u
GROUP BY u.occupation;
/* output */
18::70

/* Query 4 */

https://www.cs.purdue.edu/homes/clifton/cs348/q1.py

/* Give the title and average rating for each movie released in 1998.

Round the average to the nearest tenth. */
[SQL omitted]
/* output */
After Life (1998)::4.1

/* Query 5 */
/* For each user age group, compute the average rating given by the

users in that age group. Round the average to the nearest tenth. */
[SQL omitted]*

/* output */
25::3.5

Because the Spark SQL library is well developed, some of these queries

can be completed using a call to sqlContext.sql(). For other queries,

you may have to do some post-query processing.

When writing your queries in Spark, take care that you do not use any

Spark SQL keywordds as column names. This will give you an error.

NOTE: Queries 4 and 5 ask you to compute averages. Depending on how

you compute your average, your solution may differ from our solution

by ±0.1. There will not be any penalty for this.

/**********
* Deliverables
**********/

Note that it is not sufficient to simply execute your queries in the

Spark shell and turn in your query results. You must collect your

commands in a Python job. We should be able to launch your python job

using:

$ spark-submit --master yarn [job.py] [path_to_input_dir] [output_dir]

*
To get full credit on the assignment, you must carefully follow the

instructions below. Make sure to name your files as indicated. You

should turn in your code and results file for Query 1 (the example

query) and for Queries 2-5. (You may turn in the Query 1 code without

modification.)

Create a directory with your Purdue ID as the directory name. (Here,

by Purdue ID we mean your career account username. Do not use your

openstack username.) In this directory, create five subdirectories,

one for each query. Within each query directory, place the code for

your Python job as well as a single file with your query results

(retrieved from HDFS with -getmerge).

[PurdueID]_p4/

q1/
q1.py
q1_results.txt

q2/
 q2.py
 q2_results.txt
...

Create a zip file of the above folder, named [PurdueId]_p4.zip and
submit the file to Blackboard.

